首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2090篇
  免费   192篇
  2282篇
  2024年   2篇
  2023年   17篇
  2022年   43篇
  2021年   75篇
  2020年   40篇
  2019年   54篇
  2018年   50篇
  2017年   58篇
  2016年   81篇
  2015年   152篇
  2014年   146篇
  2013年   144篇
  2012年   222篇
  2011年   180篇
  2010年   95篇
  2009年   76篇
  2008年   143篇
  2007年   109篇
  2006年   110篇
  2005年   111篇
  2004年   77篇
  2003年   71篇
  2002年   67篇
  2001年   12篇
  2000年   19篇
  1999年   20篇
  1998年   13篇
  1997年   10篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1978年   3篇
  1973年   9篇
  1972年   4篇
  1971年   6篇
  1970年   2篇
  1967年   2篇
  1958年   1篇
排序方式: 共有2282条查询结果,搜索用时 15 毫秒
61.
Using directed evolution and site‐directed mutagenesis, we have isolated a highly thermostable variant of Aspergillus niger glucoamylase (GA), designated CR2‐1 . CR2‐1 includes the previously described mutations Asn20Cys and Ala27Cys (forming a new disulfide bond), Ser30Pro, Thr62Ala, Ser119Pro, Gly137Ala, Thr290Ala, His391Tyr and Ser436Pro. In addition, CR2‐1 includes several new putative thermostable mutations, Val59Ala, Val88Ile, Ser211Pro, Asp293Ala, Thr390Ser, Tyr402Phe and Glu408Lys, identified by directed evolution. CR2‐1 GA has a catalytic efficiency (kcat/Km) at 35°C and a specific activity at 50°C similar to that of wild‐type GA. Irreversible inactivation tests indicated that CR2‐1 increases the free energy of thermoinactivation at 80°C by 10 kJ mol?1 compared with that of wild‐type GA. Thus, CR2‐1 is more thermostable (by 5 kJ mol?1 at 80°C) than the most thermostable A. niger GA variant previously described, THS8 . In addition, Val59Ala and Glu408Lys were shown to individually increase the thermostability in GA variants by 1 and 2 kJ mol?1, respectively, at 80°C.  相似文献   
62.
The iron-sulfur cluster-free hydrogenase (Hmd) from methanogenic archaea harbors an iron-containing cofactor of yet unknown structure. X-ray absorption spectroscopy of the active, as isolated enzyme from Methanothermobacter marburgensis (mHmd) and of the active, reconstituted enzyme from Methanocaldococcus jannaschii (jHmd) revealed the presence of mononuclear iron with two CO, one sulfur and one or two N/O in coordination distance. In jHmd, the single sulfur ligand is most probably provided by Cys176, as deduced from a comparison of the activity and of the x-ray absorption and M?ssbauer spectra of the enzyme mutated in any of the three conserved cysteines. In the isolated Hmd cofactor, two CO, one sulfur, and two nitrogen/oxygen atoms coordinate the iron, the sulfur ligand being most probably provided by mercaptoethanol, which is absolutely required for the extraction of the iron-containing cofactor from the holoenzyme and for the stabilization of the extracted cofactor. In active mHmd holoenzyme, the number of iron ligands increased by one when one of the Hmd inhibitors (CO or KCN) were present, indicating that in active Hmd, the iron contains an open coordination site, which is proposed to be the site of H2 interaction.  相似文献   
63.

Aim of study

To evaluate the feasibility of ipilimumab treatment for metastatic melanoma outside the boundaries of clinical trials, in a setting similar to that of daily practice.

Methods

Ipilimumab was available upon physician request in the Expanded Access Programme for patients with life-threatening, unresectable stage III/IV melanoma who failed or did not tolerate previous treatments and for whom no therapeutic option was available. Induction treatment with ipilimumab 10?mg/kg was administered intravenously every 3?weeks, for a total of 4 doses, with maintenance doses every 12?weeks based on physicians?? discretion and clinical judgment. Tumors were assessed at baseline, Week 12, and every 12?weeks thereafter per mWHO response criteria, and clinical response was scored as complete response (CR), partial response (PR), stable disease (SD), or progressive disease. Durable disease control (DC) was defined as SD at least 24?weeks from the first dose, CR, or PR.

Results

Disease control rate at 24 and 60?weeks was 29.6% and 15%, respectively. Median overall survival at a median follow-up of 8.5?months was 9?months. The 1- and 2-year survival rates were 34.8% and 23.5%, respectively. Changes in lymphocyte count slope and absolute number during ipilimumab treatment appear to correlate with clinical response and survival, respectively. Adverse events were predominantly immune related, manageable, and generally reversible. One patient died from pancytopenia, considered possibly treatment related.

Conclusion

Ipilimumab was a feasible treatment for malignant melanoma in heavily pretreated, progressing patients. A sizeable proportion of patients experienced durable DC, including benefits to long-term survival.  相似文献   
64.
Aggrecanases are now believed to be the principal proteinases responsible for aggrecan degradation in osteoarthritis. Given their potential as a drug target, we solved crystal structures of the two most active human aggrecanase isoforms, ADAMTS4 and ADAMTS5, each in complex with bound inhibitor and one wherein the enzyme is in apo form. These structures show that the unliganded and inhibitor-bound enzymes exhibit two essentially different catalytic-site configurations: an autoinhibited, nonbinding, closed form and an open, binding form. On this basis, we propose that mature aggrecanases exist as an ensemble of at least two isomers, only one of which is proteolytically active.  相似文献   
65.
Phytoplankton can be exposed to periods of N starvation with episodic N resupply. N starvation in Dunaliella tertiolecta (Butcher) measured over 4 days was characterized by slow reduction in cell chl and protein content and chl/carotenoid ratio and a decline in photosynthetic capacity and maximum quantum yield of photosynthesis (Fv/Fm). In the early stages of N starvation, cell division was maintained despite reduction in cellular chl. Chl content was more sensitive than carotenoids to N deprivation, and cellular chl a was maintained preferentially over chl b under N starvation. NO3? resupply stimulated rapid and complete recovery of Fv/Fm (from 0.4 to 0.7) within 24 h and commencement of cell division after 10 h, although N‐replete levels of cell chl and protein were not reestablished within 24 h. Recovery of Fv/Fm was correlated with increases in cell chl and protein and was more related to increases in Fm than to changes in F0. Recovery of Fv/Fm was biphasic with a second phase of recovery commencing 4–6 h after resupply of NO3?. Uptake of NO3? from the external medium and the recovery of Fv/Fm, cell chl, and protein were inhibited when either cytosolic or chloroplastic protein synthesis was inhibited by cycloheximide or lincomycin, respectively; a time lag observed before maximum NO3? uptake was consistent with synthesis of NO3? transporters and assimilation enzymes. When both chloroplastic and cytosolic translation was inhibited, Fv/Fm declined dramatically. Dunaliella tertiolecta demonstrated a capacity to rapidly reestablish photosynthetic function and initiate cell division after N resupply, an important strategy in competing for limiting inorganic N resources.  相似文献   
66.
Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.  相似文献   
67.
We describe the first lipase structure from a thermophilic organism. It shares less than 20% amino acid sequence identity with other lipases for which there are crystal structures, and shows significant insertions compared with the typical alpha/beta hydrolase canonical fold. The structure contains a zinc-binding site which is unique among all lipases with known structures, and which may play a role in enhancing thermal stability. Zinc binding is mediated by two histidine and two aspartic acid residues. These residues are present in comparable positions in the sequences of certain lipases for which there is as yet no crystal structural information, such as those from Staphylococcal species and Arabidopsis thaliana. The structure of Bacillus stearothermophilus P1 lipase provides a template for other thermostable lipases, and offers insight into mechanisms used to enhance thermal stability which may be of commercial value in engineering lipases for industrial uses.  相似文献   
68.
There are few studies on rhinitis and sick building syndrome (SBS) among students in tropical countries. We studied associations between levels of five fungal DNA sequences, two mycotoxins (sterigmatocystin and verrucarol) and cat allergen (Fel d 1) levels in schools and rhinitis and other weekly SBS symptoms in the students. Fungal DNA was measured by quantitative PCR and cat allergen by ELISA. Pupils (N = 462) from eight randomly selected schools in Johor Bahru, Malaysia participated (96%). Dust samples were collected by cotton swabs and Petri dishes exposed for one week. None of the schools had a mechanical ventilation system, but all classrooms had openable windows that were kept open during lectures and indoor CO2 levels were low (mean 492 ppm; range 380–690 ppm). Weekly nasal symptoms (rhinitis) (18.8%), ocular (11.6%), throat (11.1%), dermal symptoms, headache (20.6%) and tiredness (22.1%) were common. Total fungal DNA in swab samples was associated with rhinitis (p = 0.02), ocular symptoms (p = 0.009) and tiredness (p = 0.001). There were positive associations between Aspergillus versicolor DNA in Petri dish samples, ocular symptoms (p = 0.02) and tiredness (p = 0.001). The level of the mycotoxin verrucarol (produced by Stachybotrys chartarum) in swab samples was positively associated with tiredness (p = 0.04). Streptomyces DNA in swab samples (p = 0.03) and Petri dish samples (p = 0.03) were negatively associated with tiredness. In conclusion, total fungal contamination, measured as total fungal DNA) in the classrooms, Aspergillus versicolor and verrucarol can be risk factors for rhinitis and SBS symptoms among students in the tropical country Malaysia.  相似文献   
69.
70.
The SH3 domains are small protein modules of 60-85 amino acid residues that are found in many proteins involved in intracellular signal transduction. The SH3 domain of the p85alpha subunit of bovine phosphatidylinositol 3'-kinase (PI3-SH3) under acidic solution adopts a compact denatured state from which amyloid fibrils are readily formed. This aggregation process has been found to be modulated substantially by solution conditions. Here, we have analyzed the conformational features of the native and acid denatured states of PI3-SH3 by limited proteolysis experiments using proteinase K and pepsin, respectively. Moreover, we have analyzed the propensity of PI3-SH3 to be hydrolyzed by pepsin at different stages in the process of aggregation and amyloid formation at pH 1.2 and 2.0 and compared the sites of proteolysis under these conditions with the conformational features of both native and aggregated PI3-SH3. The results demonstrate that the denatured state of PI3-SH3 formed at low pH is relatively resistant to proteolysis, indicating that it is partially folded. The long loop connecting beta-strands b and c in the native protein is the region in this structure most susceptible to proteolysis. Remarkably, aggregates of PI3-SH3 that are formed initially from this denatured state in acid solution display enhanced susceptibility to proteolysis of the long loop, suggesting that the protein becomes more unfolded in the early stages of aggregation. By contrast, the more defined amyloid fibrils that are formed over longer periods of time are completely resistant to proteolysis. We suggest that the protein aggregates formed initially are relatively dynamic species that are able readily to reorganize their interactions to enable formation of very well ordered fibrillar structures. In addition, the disordered and non-native character of the polypeptide chains in the early aggregates could be important in determining the high cytotoxicity that has been revealed in previous studies of these species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号