首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1964篇
  免费   187篇
  2024年   2篇
  2023年   17篇
  2022年   42篇
  2021年   75篇
  2020年   40篇
  2019年   53篇
  2018年   50篇
  2017年   58篇
  2016年   81篇
  2015年   149篇
  2014年   144篇
  2013年   141篇
  2012年   220篇
  2011年   156篇
  2010年   92篇
  2009年   74篇
  2008年   135篇
  2007年   99篇
  2006年   103篇
  2005年   110篇
  2004年   73篇
  2003年   66篇
  2002年   58篇
  2001年   8篇
  2000年   14篇
  1999年   14篇
  1998年   12篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   4篇
  1988年   2篇
  1985年   3篇
  1982年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   3篇
  1971年   6篇
  1970年   1篇
  1969年   1篇
  1964年   1篇
  1958年   1篇
排序方式: 共有2151条查询结果,搜索用时 17 毫秒
951.
Bactrocera oleae (Rossi) (Diptera: Tephritidae) is the main pest of olive trees (Olea europaea L.), causing major damages in olive crops. Improvement of mass rearing is a prerequisite for the successful development of large-scale sterile insect technique (SIT) applications. This can be achieved through the enrichment of artificial diets with gut bacteria isolates. We assessed the efficiency of three gut bacteria previously isolated from Ceratitis capitata (Wiedemann), and four isolated from B. oleae, as larval diet additives in both live and inactivated/dead forms. Our results showed that dead Enterobacter sp. AA26 increased pupal weight, whereas both live and dead cells increased pupal and adult production and reduced immature developmental time, indicating that its bacterial cells serve as a direct nutrient source. Live Providencia sp. AA31 improved pupal and adult production, enhanced male survival under stress conditions, and delayed immature development. Dead Providencia sp. AA31, however, did not affect production rates, indicating that live bacteria can colonize the insect gut and biosynthesize nutrients essential for larval development. Live and dead Bacillus sp. 139 increased pupal weight, accelerated immature development, and increased adult survival under stress. Moreover, live Bacillus sp. 139 improved adult production, indicating that Bacillus cells are a direct source of nutrients. Dead Serratia sp. 49 increased pupal and adult production and decreased male survival under stress conditions whereas live cells decreased insect production, indicating that the live strain is entomopathogenic, but its dead cells can be utilized as nutrient source. Klebsiella oxytoca, Enterobacter sp. 23, and Providencia sp. 22 decreased pupal and subsequent adult production and were harmful for B. oleae. Our findings indicate that dead Enterobacter sp. AA26 is the most promising bacterial isolate for the improvement of B. oleae mass rearing in support of future SIT or related population suppression programs.  相似文献   
952.

Ommastrephid squid produce some of the smallest cephalopod hatchlings, whose feeding behavior has not been observed. The present study aimed at indirectly filling this knowledge gap by describing ontogenetic changes in beak morphology and morphometry and integrating these results with published datasets on Illex argentinus arm crown morphology and gut contents. Individuals [0.7–15 mm mantle length (ML)] were measured, weighed, and had their buccal mass extracted. Jaw measurements were correlated with ML to determine whether jaw development occurred linearly with ML. For a 10 mm increment in ML, weight increased 430-fold. The jaws of hatchlings were rudimentary, but in larger paralarvae the rostrum protrudes and the jaw features (teeth, slit, groove) disappear. Increases in ML were predicted by beak robustness indices and rostrum protrusion, with growth discontinuities pointing to faster growth in individuals ≤ 2 mm ML. Morphological changes in the beak and arm crown are in synchrony with a transitional event in the feeding ecology of paralarvae: the onset of active predation on crustaceans and masticating their exoskeletons for ingestion. Integration of the results with published data has led to the proposal of a hypothesis of four size-differentiated developmental stages in the feeding ecology of I. argentinus rhynchoteuthions.

  相似文献   
953.
Foliar absorption of zinc (Zn) is limited by several barriers, the first of which is the leaf cuticle. In this study, we investigated the absorption of Zn from Zn oxide nanoparticles (ZnO-NPs) in wheat (Triticum aestivum cv Gladius) and sunflower (Helianthus annuus cv Hyoleic 41) to determine the importance of NP surface coating for Zn absorption. Fourier transform infrared (FTIR) spectroscopy showed a higher polysaccharide content in the wheat cuticle than sunflower, indicated by a more pronounced glycosidic bond at 1020 cm−1, but wax and cutin content were similar. Scanning electron microscopy (SEM) revealed that t richome density was twice as high in wheat (3600 ± 900 cm−2) as in sunflower (1600 cm−2) and stomatal density four times higher in sunflower (6400 ± 800 cm−2 in wheat and 22 900 cm−2 in sunflower). Suspensions of ZnO-NPs with coatings of different hydrophobicity were applied to leaves to compare Zn absorption using X-ray fluorescence microscopy (XFM) and inductively coupled plasma mass spectroscopy (ICP-MS). Absorption of Zn was similar between wheat and sunflower when Zn was applied at 1000 mg Zn l−1, but much less Zn was absorbed from all ZnO products than from soluble Zn fertiliser. Particle coating did not affect Zn absorption, but it may facilitate particle adhesion to leaves, providing a longer-term source of resupply of Zn ions to the leaves. Differences in leaf surface characteristics did not affect Zn absorption, indicating that the cuticle is the main pathway of absorption under these conditions.  相似文献   
954.
The non-lethal effects of predation can significantly influence animal behavior and population composition. Research has often centered around prey response to predator exposure in the short term, but fewer studies have highlighted the effects of long-term predator exposures. In addition, studies of responses to predation risk are not always calibrated against the ecological history of predation risk in specific populations. We address these gaps by examining the effects of both long- and short-term predator exposure on the behavior of individuals from populations that have different ecological histories of predation risk. We exposed individuals from high-predation and low-predation populations of the live-bearing freshwater poeciliid, Heterandria formosa, to predators to assess changes in male reproductive behavior toward females. We also assessed longer-term reproductive responses by exposing male and female H. formosa to predators at a random time of day, every day, for 30 days. In the presence of a predator, in the short term, males changed the frequency of their behaviors and females varied in their concentration of cortisol, demonstrating immediate responses to the perceived risk. The magnitude of these changes was larger in the population without a long history of predator exposure. However, we found that males and females did not change their reproductive output when exposed to predators over longer periods of time, suggesting that individuals acclimatize to the level of predation risk they experience. These results also suggest that short-term variation in behavior or stress hormone responses should not be used as proxies for long-term responses or fitness effects. Future work should assess both short-term behavior and long-term responses while simultaneously considering the ecological history of populations.  相似文献   
955.
Environmental DNA (eDNA) sampling, the detection of species‐specific genetic material in water samples, is an emerging tool for monitoring aquatic invasive species. Optimizing eDNA sampling protocols can be challenging because there is imperfect understanding of how each step of the protocol influences its sensitivity. This paper develops a probabilistic model that characterizes each step of an eDNA sampling protocol to evaluate the protocol's overall detection sensitivity for one sample. The model is then applied to analyse how changes over time made to the eDNA sampling protocol to detect bighead (BH) and silver carp (SC) eDNA have influenced its sensitivity, and hence interpretation of the results. The model shows that changes to the protocol have caused the sensitivity of the protocol to fluctuate. A more efficient extraction method in 2013, new species‐specific markers with a qPCR assay in 2014, and a more efficient capture method in 2015 have improved the sensitivity, while switching to a larger elution volume in 2013 and a smaller sample volume in 2015 have reduced the sensitivity. Overall, the sensitivity of the current protocol is higher for BH eDNA detection and SC eDNA detection compared to the original protocol used from 2009 to 2012. The paper shows how this model of eDNA sampling can be used to evaluate the effect of proposed changes in an eDNA sampling and analysis protocol on the sensitivity of that protocol to help researchers optimize their design.  相似文献   
956.
Genes with opposing effects on fitness at different life stages are the mechanistic basis for evolutionary theories of aging and life history. Examples come from studies of mutations in model organisms, but there is little knowledge of genetic bases of life history tradeoffs in natural populations. Here, we test the hypothesis that alleles affecting oxygen sensing in Glanville fritillary butterflies have opposing effects on larval versus adult fitness‐related traits. Intermediate‐frequency alleles in Succinate dehydrogenase d, and to a lesser extent Hypoxia inducible factor 1α, are associated in larvae with variation in metabolic rate and activation of the hypoxia inducible factor (HIF) pathway, which affects tracheal development and delivery of oxygen to adult flight muscles. A dominant Sdhd allele is likely to cause antagonistic pleiotropy for fitness through its opposing effects on larval metabolic and growth rate versus adult flight and dispersal, and may have additional effects arising from sensitivity to low‐iron host plants. Prior results in Glanville fritillaries indicate that fitness of alleles in Sdhd and another antagonistically pleiotropic metabolic gene, Phosphoglucose isomerase, depend strongly on the size and distribution of host plant patches. Hence, these intermediate‐frequency alleles are involved in ecoevolutionary dynamics involving life history tradeoffs.  相似文献   
957.
958.
Plant and Soil - Drought is the main abiotic stress affecting Mediterranean forests. Root systems are responsible for water uptake, but intraspecific variability in tree root morphology is poorly...  相似文献   
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号