首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4546篇
  免费   439篇
  国内免费   1篇
  4986篇
  2023年   19篇
  2022年   69篇
  2021年   115篇
  2020年   60篇
  2019年   83篇
  2018年   68篇
  2017年   86篇
  2016年   135篇
  2015年   224篇
  2014年   228篇
  2013年   248篇
  2012年   340篇
  2011年   286篇
  2010年   165篇
  2009年   150篇
  2008年   234篇
  2007年   190篇
  2006年   191篇
  2005年   208篇
  2004年   166篇
  2003年   146篇
  2002年   144篇
  2001年   83篇
  2000年   106篇
  1999年   93篇
  1998年   39篇
  1997年   42篇
  1996年   36篇
  1995年   36篇
  1994年   35篇
  1993年   33篇
  1992年   66篇
  1991年   59篇
  1990年   50篇
  1989年   50篇
  1988年   54篇
  1987年   40篇
  1986年   39篇
  1985年   43篇
  1984年   37篇
  1983年   36篇
  1982年   30篇
  1981年   19篇
  1979年   26篇
  1978年   31篇
  1977年   29篇
  1976年   22篇
  1975年   25篇
  1973年   18篇
  1971年   24篇
排序方式: 共有4986条查询结果,搜索用时 14 毫秒
171.

Background

Glioblastoma multiforme is the most lethal brain tumor with limited therapeutic options. Antigens expressed on the surface of malignant cells are potential targets for antibody-mediated gene/drug delivery.

Principal Findings

In this study, we investigated the ability of genetically modified human mesenchymal stem cells (hMSCs) expressing a single-chain antibody (scFv) on their surface against a tumor specific antigen, EGFRvIII, to enhance the therapy of EGFRvIII expressing glioma cells in vivo. The growth of U87-EGFRvIII was specifically delayed in co-culture with hMSC-scFvEGFRvIII. A significant down-regulation was observed in the expression of pAkt in EGFRvIII expressing glioma cells upon culture with hMSC-scFvEGFRvIII vs. controls as well as in EGFRvIII expressing glioma cells from brain tumors co-injected with hMSC-scFvEGFRvIII in vivo. hMSC expressing scFvEGFRvIII also demonstrated several fold enhanced retention in EGFRvIII expressing flank and intracranial glioma xenografts vs. control hMSCs. The growth of U87-EGFRvIII flank xenografts was inhibited by 50% in the presence of hMSC-scFvEGFRvIII (p<0.05). Moreover, animals co-injected with U87-EGFRvIII and hMSC-scFvEGFRvIII intracranially showed significantly improved survival compared to animals injected with U87-EGFRvIII glioma cells alone or with control hMSCs. This survival was further improved when the same animals received an additional dosage of hMSC-scFvEGFRvIII two weeks after initial tumor implantation. Of note, EGFRvIII expressing brain tumors co-injected with hMSCs had a lower density of CD31 expressing blood vessels in comparison with control tumors, suggesting a possible role in tumor angiogenesis.

Conclusions/Significance

The results presented in this study illustrate that genetically modified MSCs may function as a novel therapeutic vehicle for malignant brain tumors.  相似文献   
172.
173.
The glucosylation site on glycogenin, the protein primer required for de novo glycogen synthesis, has been identified. The glucose is attached at position C1 in a glycosidic linkage with a unique tyrosine, and the sequence surrounding this residue was found to be: His-Leu-Pro-Phe-Ile-Tyr-Asn-Leu-Ser-Ser-Ile-Ser-Ile-Tyr(Glc)-Ser-Tyr-Leu -Pro- Ala-Phe-Lys. The same tyrosine residue is glycosylated whether glycogenin is isolated as a complex with the catalytic subunit of glycogen synthase, or covalently attached to glycogen. The possibility that insulin and growth factors may enhance glycogen synthesis via stimulation of the priming reaction is discussed.  相似文献   
174.
The reductive dechlorination of chlorophenols was studied in three fluidized-bed reactors (FBRs) with respect to enrichment, pathways, complete dechlorination, and overall performance. The methanogenic consortia, developed by previous researchers in our laboratory, have been further enriched by reducing the ratio of substrate to pentachlorophenol (PCP) and increasing the PCP loading. The performance of the consortia was improved, and complete dechlorination at high PCP loading rates was observed, reaching a PCP loading of 1227 µmol/L d with 99% chlorophenol removal. The dechlorination rates in the reactors for chlorophenol (CP) congeners were obtained and were used to evaluate the performance of the three consortia and to quantitatively estimate the fates of these chlorophenols in the reactors. The consortium with the best performance was further investigated in bottle tests by treatment with heat and metabolic inhibitors to examine chlorophenol degradation and to characterize the CP degraders. The degradation of all monochlorophenols was completely inhibited after heat treatment, but the degradation of all other tested chlorophenols was hardly affected by heat treatment, indicating that spore-forming bacteria likely were involved in dechlorination. Addition of sulfate negatively affected CP degradation, but addition of molybdate reduced the effect of sulfate. Tests with 2-bromoethanesulfonic acid and vancomycin indicated that bacteria were responsible for chlorophenol degradation in the consortium.  相似文献   
175.
Background: Protein kinase Cs are a family of enzymes that transduce the plethora of signals promoting lipid hydrolysis. Here, we show that protein kinase C must first be processed by three distinct phosphorylations before it is competent to respond to second messengers.Results We have identified the positions and functions of the in vivo phosphorylation sites of protein kinase C by mass spectrometry and peptide sequencing of native and phosphatase-treated kinase from the detergent-soluble fraction of cells. Specifically, the threonine at position 500 (T500) on the activation loop, and T641 and S660 on the carboxyl terminus of protein kinase C βII are phosphorylated in vivo. T500 and S660 are selectively dephosphorylated in vitro by protein phosphatase 2A to yield an enzyme that is still capable of lipid-dependent activation, whereas all three residues are dephosphorylated by protein phosphatase 1 to yield an inactive enzyme. Biochemical analysis reveals that protein kinase C autophosphorylates on S660, that autophosphorylation on S660 follows T641 autophosphorylation, that autophosphorylation on S660 is accompanied by the release of protein kinase C into the cytosol, and that T500 is not an autophosphorylation site.Conclusion Structural and biochemical analyses of native and phosphatase-treated protein kinase C indicate that protein kinase C is processed by three phosphorylations. Firstly, trans-phosphorylation on the activation loop (T500) renders it catalytically competent to autophosphorylate. Secondly, a subsequent autophosphorylation on the carboxyl terminus (T641) maintains catalytic competence. Thirdly, a second autophosphorylation on the carboxyl terminus (S660) regulates the enzyme's subcellular localization. The conservation of each of these residues (or an acidic residue) in conventional, novel and atypical protein kinase Cs underscores the essential role for each in regulating the protein kinase C family.  相似文献   
176.
Mice have a monodisperse high density lipoprotein (HDL) profile, whereas humans have two major subfractions designated HDL(2) and HDL(3). Human apoA-I transgenic mice exhibit a human-like HDL profile, indicating that the amino acid sequence of apoA-I is a determinant of the HDL profile. Comparison of the primary sequence of mouse and human apoA-I and the previously designated "hinge" domain of apoA-I led us to hypothesize that alpha-helices 7 and 8 (7/8) are determinants of HDL subclass distribution. The following proteins were expressed in Escherichia coli: human apoA-I, T7-hAI; mouse apoA-I, T7-mAI; chimeric human apoA-I containing murine helices 7/8 in place of human helices 7/8, T7-hAI(m7/8); and the reciprocal chimera, T7-mAI(h7/8). The recombinant proteins were examined for their association with human plasma HDL subclasses. The results demonstrated that T7-hAI bound HDL(2) and HDL(3) equally well, whereas T7-mAI bound to HDL(2) preferentially. T7-hAI(m7/8) behaved like T7-mAI, and T7-mAI(h7/8) behaved like T7-hAI. Thus, alpha-helices 7/8 are strong contributors to the pattern of HDL subclass association. Self-association, alpha-helicity, cholesterol efflux, and lecithin-cholesterol acyltransferase activity of the recombinant proteins were also assessed. Human apoA-I self-associates more and activates human lecithin-cholesterol acyltransferase better than mouse apoA-I. These differential characteristics of human and mouse apoA-I are not dependent on helices 7/8.  相似文献   
177.
178.
RAPD markers were used to examine the degree of genetic variation within the putatively asexual basidiomycete fungus (Lepiotaceae: provisionally named Leucoagaricus gongylophorus) associated with the leaf-cutting ant species Atta cephalotes. We analyzed fungal isolates from ant nests in two geographically distant sites, two isolates from Panama and five isolates from Trinidad. Ten decamer primers were used to amplify total DNA from these seven fungal isolates, and RAPD banding patterns were compared. Genetic similarity among isolates was determined by pair-wise comparisons of the shared number of DNA bands on an agarose gel. There was considerable genetic variation among isolates of the symbiotic fungus even within sites. Pairs of fungal isolates from the two different sites shared an average of only 36% of the bands in their RAPD profiles, while pairs from the within sites shared an average of 72% of the bands. RAPD markers may be useful for further investigation of the genetic structure of the fungal symbiont within species of leaf-cutting ants.  相似文献   
179.
Discomfort during load carriage is a major issue for activities using backpacks (e.g. infantry maneuvers, children carrying school supplies, or outdoor sports). It is currently unclear which mechanical parameters are responsible for subjectively perceived discomfort. The aim of this study was to identify objectively measured mechanical predictors of discomfort during load carriage. We compared twelve different configurations of a typical load carriage system, a commercially available backpack with a hip belt. The pressure distribution under the hip belt and the shoulder strap, as well as the tensile force in the strap and the relative motion of the backpack were measured. Multiple linear regression analyses were conducted to investigate possible predictors of discomfort. The results demonstrate that static peak pressure, or alternatively, static strap force is a significant (p<0.001) predictor of discomfort during load carriage in the shoulder and hip region, accounting for 85% or more of the variation in discomfort. As an additional finding, we discovered that the regression coefficients of these predictors are significantly smaller for the hip than for the shoulder region. As static peak pressure is measured directly on the body, it is less dependent on the type of load carriage system than static strap force. Therefore, static peak pressure is well suited as a generally applicable, objective mechanical parameter for the optimization of load carriage system design. Alternatively, when limited to load carriage systems of the type backpack with hip belt, static strap force is the most valuable predictor of discomfort. The regionally differing regression coefficients of both predictors imply that the hip region is significantly more tolerant than the shoulder region. In order to minimize discomfort, users should be encouraged to shift load from the shoulders to the hip region wherever possible, at the same time likely decreasing the risk of low back pain or injury.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号