首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2038篇
  免费   200篇
  2238篇
  2023年   17篇
  2022年   42篇
  2021年   75篇
  2020年   41篇
  2019年   53篇
  2018年   50篇
  2017年   59篇
  2016年   82篇
  2015年   152篇
  2014年   145篇
  2013年   141篇
  2012年   223篇
  2011年   158篇
  2010年   96篇
  2009年   77篇
  2008年   139篇
  2007年   101篇
  2006年   106篇
  2005年   112篇
  2004年   78篇
  2003年   73篇
  2002年   59篇
  2001年   9篇
  2000年   15篇
  1999年   14篇
  1998年   12篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1983年   4篇
  1982年   6篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1972年   6篇
  1971年   6篇
  1970年   6篇
  1969年   3篇
  1968年   2篇
排序方式: 共有2238条查询结果,搜索用时 15 毫秒
61.
The nucleoside analog 5,6-dihydro-5-aza-2′-deoxycytidine (KP-1212) has been investigated as a first-in-class lethal mutagen of human immunodeficiency virus type-1 (HIV-1). Since a prodrug monotherapy did not reduce viral loads in Phase II clinical trials, we tested if ribonucleotide reductase inhibitors (RNRIs) combined with KP-1212 would improve antiviral activity. KP-1212 potentiated the activity of gemcitabine and resveratrol and simultaneously increased the viral mutant frequency. G-to-C mutations predominated with the KP-1212-resveratrol combination. These observations represent the first demonstration of a mild anti-HIV-1 mutagen potentiating the antiretroviral activity of RNRIs and encourage the clinical translation of enhanced viral mutagenesis in treating HIV-1 infection.  相似文献   
62.
The digital laminae is a two layer tissue that attaches the distal phalanx to the inner hoof wall, thus suspending the horse''s axial skeleton in the hoof capsule. This tissue fails at the epidermal:dermal junction in laminitic horses, causing crippling disease. Basal epithelial cells line the laminar epidermal:dermal junction, undergo physiological change in laminitic horses, and lose versican gene expression. Versican gene expression is purportedly under control of the canonical Wnt signaling pathway and is a trigger for mesenchymal-to-epithelial transition; thus, its repression in laminar epithelial cells of laminitic horses may be associated with suppression of the canonical Wnt signaling pathway and loss of the epithelial cell phenotype. In support of the former contention, we show, using laminae from healthy horses and horses with carbohydrate overload-induced laminitis, quantitative real-time polymerase chain reaction, Western blotting after sodium dodecylsulfate polyacrylamide gel electrophoresis, and immunofluorescent tissue staining, that positive and negative regulatory components of the canonical Wnt signaling pathway are expressed in laminar basal epithelial cells of healthy horses. Furthermore, expression of positive regulators is suppressed and negative regulators elevated in laminae of laminitic compared to healthy horses. We also show that versican gene expression in the epithelial cells correlates positively with that of β-catenin and T-cell Factor 4, consistent with regulation by the canonical Wnt signaling pathway. In addition, gene and protein expression of β-catenin correlates positively with that of integrin β4 and both are strongly suppressed in laminar basal epithelial cells of laminitic horses, which remain E-cadherin+/vimentin, excluding mesenchymal transition as contributing to loss of the adherens junction and hemidesmosome components. We propose that suppression of the canonical Wnt signaling pathway, and accompanying reduced expression of β catenin and integrin β4 in laminar basal epithelial cells reduces cell:cell and cell:basement membrane attachment, thus, destabilizing the laminar epidermal:dermal junction.  相似文献   
63.

Background

Metabolic syndrome (MetS) is a constellation of factors including abdominal obesity, hyperglycemia, dyslipidemias, and hypertension that increase morbidity and mortality from diabetes and cardiovascular diseases and affects more than a third of the population in the US. Clozapine, an atypical antipsychotic used for the treatment of schizophrenia, has been found to cause drug-induced metabolic syndrome (DIMS) and may be a useful tool for studying cellular and molecular changes associated with MetS and DIMS. Mitochondria dysfunction, oxidative stress and inflammation are mechanisms proposed for the development of clozapine-related DIMS. In this study, the effects of clozapine on mitochondrial function and inflammation in insulin responsive and obesity-associated cultured cell lines were examined.

Methodology/Principal Findings

Cultured mouse myoblasts (C2C12), adipocytes (3T3-L1), hepatocytes (FL-83B), and monocytes (RAW 264.7) were treated with 0, 25, 50 and 75 µM clozapine for 24 hours. The mitochondrial selective probe TMRM was used to assess membrane potential and morphology. ATP levels from cell lysates were determined by bioluminescence assay. Cytokine levels in cell supernatants were assessed using a multiplex array. Clozapine was found to alter mitochondria morphology, membrane potential, and volume, and reduce ATP levels in all cell lines. Clozapine also significantly induced the production of proinflammatory cytokines IL-6, GM-CSF and IL12-p70, and this response was particularly robust in the monocyte cell line.

Conclusions/Significance

Clozapine damages mitochondria and promotes inflammation in insulin responsive cells and obesity-associated cell types. These phenomena are closely associated with changes observed in human and animal studies of MetS, obesity, insulin resistance, and diabetes. Therefore, the use of clozapine in DIMS may be an important and relevant tool for investigating cellular and molecular changes associated with the development of these diseases in the general population.  相似文献   
64.
65.
Some arbuscular mycorrhizal fungi contain endocellular bacteria. In Gigaspora margarita BEG 34, a homogenous population of beta-Proteobacteria is hosted inside the fungal spore. The bacteria, named Candidatus Glomeribacter gigasporarum, are vertically transmitted through fungal spore generations. Here we report how a protocol based on repeated passages through single-spore inocula caused dilution of the initial bacterial population eventually leading to cured spores. Spores of this line had a distinct phenotype regarding cytoplasm organization, vacuole morphology, cell wall organization, lipid bodies and pigment granules. The absence of bacteria severely affected presymbiotic fungal growth such as hyphal elongation and branching after root exudate treatment, suggesting that Ca. Glomeribacter gigasporarum is important for optimal development of its fungal host. Under laboratory conditions, the cured fungus could be propagated, i.e. could form mycorrhizae and sporulate, and can therefore be considered as a stable variant of the wild type. The results demonstrated that - at least for the G. margarita BEG 34 isolate - the absence of endobacteria affects the spore phenotype of the fungal host, and causes delays in the growth of germinating mycelium, possibly affecting its ecological fitness. This cured line is the first manipulated and stable isolate of an arbuscular mycorrhizal fungus.  相似文献   
66.

Aim

Cheatgrass (Bromus tectorum) is notorious for creating positive feedbacks that facilitate vegetation type conversion within sagebrush steppe ecosystems in the western United States. Similar dynamics may exist in adjacent lower montane forest. However, fire‐forest‐cheatgrass dynamics have not been examined. We used species distribution modeling to answer three questions about fire and invasibility in lower montane forests: (Q1) Does fire create more suitable habitat for cheatgrass? (Q2) If so, which site attributes are altered to increase site suitability? (Q3) Does fire increase connectivity among suitable habitat and enhance spread?

Location

Shoshone National Forest, Wyoming, USA.

Methods

We measured cheatgrass presence–absence in 93 plots within Interior Douglas‐fir (Pseudotsuga menziesii var. glauca) forests. Random Forests predicted cheatgrass distribution with and without fire using nine site attributes: elevation, slope, aspect, solar radiation, annual precipitation, maximum temperature in July, minimum temperature in January, forest canopy cover and distance to nearest trail or road. Additionally, invasion pathways and spread were mapped using Circuitscape.

Results

Cheatgrass distribution was controlled by topographic and climate variables in the absence of fire. In particular, cheatgrass was most likely to occur at low elevation along dry, south‐ and east‐facing slopes. High‐severity fire increased potential cheatgrass distribution when forest canopy cover was reduced to below 30%. This process created new invasion pathways, which enhanced cheatgrass spread when modelled in Circuitscape.

Main conclusions

Our study showed that in the absence of fire, drier south‐ and east‐facing slopes at low elevation are most susceptible to cheatgrass invasion. However, high‐severity fire increased the total area susceptible to invasion—allowing cheatgrass to expand into previously unsuitable sites within lower montane forests in the western United States. These results are important for present day management and reflect that integrating responses to disturbance in species distribution models can be critical for making predictions about dynamically changing systems.
  相似文献   
67.
68.
69.
70.
Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号