首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   584144篇
  免费   64633篇
  国内免费   367篇
  2021年   4909篇
  2018年   6108篇
  2017年   5891篇
  2016年   8320篇
  2015年   11054篇
  2014年   12989篇
  2013年   18348篇
  2012年   20812篇
  2011年   21083篇
  2010年   14202篇
  2009年   12897篇
  2008年   18263篇
  2007年   18781篇
  2006年   17558篇
  2005年   16728篇
  2004年   16549篇
  2003年   15675篇
  2002年   15147篇
  2001年   28983篇
  2000年   28736篇
  1999年   22643篇
  1998年   7349篇
  1997年   7739篇
  1996年   7144篇
  1995年   6627篇
  1994年   6342篇
  1993年   6317篇
  1992年   17449篇
  1991年   16661篇
  1990年   16020篇
  1989年   15561篇
  1988年   14270篇
  1987年   13234篇
  1986年   12292篇
  1985年   12111篇
  1984年   9961篇
  1983年   8372篇
  1982年   6281篇
  1981年   5635篇
  1980年   5337篇
  1979年   9146篇
  1978年   7025篇
  1977年   6466篇
  1976年   5845篇
  1975年   6446篇
  1974年   6919篇
  1973年   6712篇
  1972年   6120篇
  1971年   5547篇
  1970年   4789篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
901.
902.
903.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
904.
905.
A full length cDNA encoding human pro-alpha 2(V) collagen was constructed. Partial sequencing of the cDNA and primer extension analysis of mRNA from fibroblasts found that pro-alpha 2(V) mRNA differs from the mRNAs of other fibrillar collagens in the increased length of its 5'-untranslated region. The pro-alpha 2(V) cDNA was placed downstream of the human cytomegalovirus immediate early promoter/regulatory sequences for expression studies in cultured Chinese hamster lung cells. These cells have been shown previously to synthesize large quantities of pro-alpha 1(V) homotrimers as their only collagenous product. Transfection resulted in a number of clonal cell lines that express human alpha 2(V) RNA at levels comparable to, and in some cases greater than, levels found in normal human skin fibroblasts. Pro-alpha 2(V) chains produced in the majority of clonal lines were of sufficient quantity to complex all available endogenous pro-alpha 1(V) chains. Chimeric heterotrimers, composed of hamster alpha 1(V) and human alpha 2(V) chains in a 2:1 ratio, were stable to pepsin digestion and were found predominantly associated with the cell layer. Surprisingly, pro-alpha 2(V) chains, in excess to pro-alpha 1(V) chains, were found in the extracellular matrix and, in much greater abundance, in media. These chains were pepsin sensitive, indicating that pro-alpha 2(V) chains can be secreted as nonstable homotrimers or as free chains.  相似文献   
906.
907.
908.
909.
910.
The genetic structure of 65 chicken populations was studied using 29 simple sequence repeat loci. Six main clusters which corresponded to geographical origins and histories were identified: Brown Egg Layers; predominantly Broilers; native Chinese breeds or breeds with recent Asian origin; predominantly breeds of European derivation; a small cluster containing populations with no common history and populations that had breeding history with White Leghorn. Another group of populations that shared their genome with several clusters was defined as 'Multi-clusters'. Gallus gallus gallus (Multi-clusters), one of the subspecies of the Red Jungle Fowl, which was previously suggested to be one of the ancestors of the domesticated chicken, has almost no shared loci with European and White Egg layer populations. In a further sub-clustering of the populations, discrimination between all the 65 populations was possible, and relationships between each were suggested. The genetic variation between populations was found to account for about 34% of the total genetic variation, 11% of the variation being between clusters and 23% being between populations within clusters. The suggested clusters may assist in future studies of genetic aspects of the chicken gene pool.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号