首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20582篇
  免费   1958篇
  国内免费   21篇
  22561篇
  2023年   102篇
  2022年   218篇
  2021年   466篇
  2020年   209篇
  2019年   313篇
  2018年   360篇
  2017年   315篇
  2016年   570篇
  2015年   986篇
  2014年   1083篇
  2013年   1279篇
  2012年   1712篇
  2011年   1666篇
  2010年   1104篇
  2009年   884篇
  2008年   1374篇
  2007年   1344篇
  2006年   1218篇
  2005年   1194篇
  2004年   1155篇
  2003年   1079篇
  2002年   1021篇
  2001年   170篇
  2000年   96篇
  1999年   202篇
  1998年   255篇
  1997年   156篇
  1996年   136篇
  1995年   123篇
  1994年   114篇
  1993年   112篇
  1992年   93篇
  1991年   92篇
  1990年   80篇
  1989年   65篇
  1988年   53篇
  1987年   59篇
  1986年   47篇
  1985年   65篇
  1984年   65篇
  1983年   69篇
  1982年   77篇
  1981年   74篇
  1980年   74篇
  1979年   36篇
  1978年   65篇
  1977年   43篇
  1976年   38篇
  1975年   37篇
  1973年   26篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
Human disc-large homolog (hDlg), also known as synapse-associated protein 97, is a scaffold protein, a member of the membrane-associated guanylate kinase family, implicated in neuronal synapses and epithelial-epithelial cell junctions whose expression and function remains poorly characterized in most tissues, particularly in the vasculature. In human vascular tissues, hDlg is highly expressed in smooth muscle cells (VSMCs). Using the yeast two-hybrid system to screen a human aorta cDNA library, we identified mitogen-activated protein/extracellular signal-responsive kinase (ERK) kinase (MEK)2, a member of the ERK cascade, as an hDlg binding partner. Site-directed mutagenesis showed a major involvement of the PSD-95, disc-large, ZO-1 domain-2 of hDlg and the C-terminal sequence RTAV of MEK2 in this interaction. Coimmunoprecipitation assays in both human VSMCs and human embryonic kidney 293 cells, demonstrated that endogenous hDlg physically interacts with MEK2 but not with MEK1. Confocal microscopy suggested a colocalization of the two proteins at the inner layer of the plasma membrane of confluent human embryonic kidney 293 cells, and in a perinuclear area in human VSMCs. Additionally, hDlg also associates with the endoplasmic reticulum and microtubules in these latter cells. Taken together, these findings allow us to hypothesize that hDlg acts as a MEK2-specific scaffold protein for the ERK signaling pathway, and may improve our understanding of how scaffold proteins, such as hDlg, differentially tune MEK1/MEK2 signaling and cell responses.  相似文献   
92.
Vile D  Shipley B  Garnier E 《Ecology letters》2006,9(9):1061-1067
We show that ecosystem-specific aboveground net primary productivity (SANPP, g g−1 day−1, productivity on a per gram basis) can be predicted from species-level measures of potential relative growth rate (RGRmax), but only if RGRmax is weighted according to the species' relative abundance. This is in agreement with Grime's mass-ratio hypothesis. Productivity was measured in 12 sites in a French Mediterranean post-agricultural succession, while RGRmax was measured on 26 of the most abundant species from this successional sere, grown hydroponically. RGRmax was only weakly correlated ( r 2 = 0.12, P  < 0.05) with field age when species abundance was not considered, but the two variables were strongly correlated ( r 2 = 0.81, P  < 0.001) when the relative abundance of species in each field was taken into account. SANPP also decreased significantly with field age. This resulted in a tight relationship ( r 2 = 0.77, P  < 0.001) between productivity and RGRmax weighted according to species relative biomass contribution. Our study shows that scaling-up from the potential properties of individual species is possible, and that information on potential and realized species traits can be integrated to predict ecosystem functioning.  相似文献   
93.
Using molecular dynamics simulations and steady‐state fluorescence spectroscopy, we have identified a conformational change in the active site of a thermophilic flavoenzyme, NADH oxidase from Thermus thermophilus HB8 (NOX). The enzyme's far‐UV circular dichroism spectrum, intrinsic tryptophan fluorescence, and apparent molecular weight measured by dynamic light scattering varied little between 25 and 75°C. However, the fluorescence of the tightly bound FAD cofactor increased approximately fourfold over this temperature range. This effect appears not to be due to aggregation, unfolding, cofactor dissociation, or changes in quaternary structure. We therefore attribute the change in flavin fluorescence to a temperature‐dependent conformational change involving the NOX active site. Molecular dynamics simulations and the effects of mutating aromatic residues near the flavin suggest that the change in fluorescence results from a decrease in quenching by electron transfer from tyrosine 137 to the flavin. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
94.
95.
Abstract: The role of voltage-sensitive Ca2+ channels in mediating Ca2+ influx during ischemia was investigated in NG108-15 cells, a neuronal cell line that does not express glutamate-sensitive receptor-mediated Ca2+ channels. Concurrent 31P/19F and 23Na double-quantum filtered (DQF) NMR spectra were used to monitor cellular energy status, intracellular [Ca2+] ([Ca2+]i), and intracellular Na+ content in cells loaded with the calcium indicator 1,2-bis-(2-amino-5-fluorophenoxy)ethane-N,N,N′,N′-tetraacetic acid (5FBAPTA) during ischemia and reperfusion. Cells loaded with 5FBAPTA were indistinguishable from unloaded cells except for small immediate decreases in levels of phosphocreatine (PCr) and ATP. Ischemia induced a steady decrease in intracellular pH and PCr and ATP levels, and a steady increase in intracellular Na+ content; however, a substantial increase in [Ca2+]i (about threefold) was seen only following marked impairment of cellular energy status, when PCr was undetectable and ATP content was reduced to 55% of control levels. A depolarization-induced increase in [Ca2+]i could be completely blocked by 1 µM nifedipine, whereas up to 20 µM nifedipine had no effect on the increase in [Ca2+]i seen during ischemia. These data demonstrate that voltage-gated Ca2+ channels do not mediate significant Ca2+ flux during ischemia in this cell line and suggest an important role for Ca2+i stores, the Na+/Ca2+ antiporter, or other processes linked to cellular energy status in the increase in cytosolic Ca2+ level during ischemia.  相似文献   
96.
97.

Background

In areas where health resources are limited, community participation in the recognition and reporting of disease hazards is critical for the identification of outbreaks. This is particularly true for zoonotic diseases such as monkeypox that principally affect people living in remote areas with few health services. Here we report the findings of an evaluation measuring the effectiveness of a film-based community outreach program designed to improve the understanding of monkeypox symptoms, transmission and prevention, by residents of the Republic of the Congo (ROC) who are at risk for disease acquisition.

Methodology/Principal Findings

During 90 days, monkeypox outreach was conducted for ∼23,860 people in northern ROC. Two hundred seventy-one attendees (selected via a structured sample) were interviewed before and after participating in a small-group outreach session. The proportion of interviewees demonstrating monkeypox-specific knowledge before and after was compared. Significant gains were measured in areas of disease recognition, transmission, and mitigation of risk. The ability to recognize at least one disease symptom and a willingness to take a family member with monkeypox to the hospital increased from 49 and 45% to 95 and 87%, respectively (p<0.001, both). Willingness to deter behaviors associated with zoonotic risk, such as eating the carcass of a primate found dead in the forest, remained fundamentally unchanged however, suggesting additional messaging may be needed.

Conclusions/Significance

These results suggest that our current program of film-based educational activities is effective in improving disease-specific knowledge and may encourage individuals to seek out the advice of health workers when monkeypox is suspected.  相似文献   
98.
This study was conducted to evaluate the impacts of N fertilizer and landscape position on carbon dioxide (CO2) and methane (CH4) fluxes from a US Northern Great Plains landscape seeded to switchgrass (Panicum virgatum L.). The experimental design included three N levels (low, 0 kg N ha−1; medium, 56 kg N ha−1; and high, 112 kg N ha−1) replicated four times. The experiment was repeated at shoulder and footslope positions. Soil CO2 and CH4 fluxes were monitored once every 2 weeks from May 2010 to October 2012. The CO2 fluxes were 40% higher at the footslope than the shoulder landscape position, and CH4 fluxes were similar in both landscape positions. Soil CO2 and CH4 fluxes averaged over the sampling dates were not impacted by N rates. Seasonal variations showed highest CO2 release and CH4 uptake in summer and fall, likely due to warmer and moist soil conditions. Higher CH4 release was observed in winter possibly due to increased anaerobic conditions. However, year to year (2010–2012) variations in soil CO2 and CH4 fluxes were more pronounced than the variations due to the impact of landscape positions and N rates. Drought conditions reported in 2012, with higher annual temperature and lower soil moisture than long-term average, resulted in higher summer and fall CO2 fluxes (between 1.3 and 3 times) than in 2011 and 2010. These conditions also promoted a net CH4 uptake in 2012 in comparison to 2010 when there was net CH4 release. Results from this study conclude that landscape positions, air temperature, and soil moisture content strongly influenced soil CO2 fluxes, whereas soil moisture impacted the direction of CH4 fluxes (uptake or release). However, a comprehensive life cycle analysis would be appropriate to evaluate environmental impacts associated with switchgrass production under local environmental conditions.  相似文献   
99.
With the advancement in lineage‐specific differentiation from human pluripotent stem cells (hPSCs), downstream cell separation has now become a critical step to produce hPSC‐derived products. Since differentiation procedures usually result in a heterogeneous cell population, cell separation needs to be performed either to enrich the desired cell population or remove the undesired cell population. This article summarizes recent advances in separation processes for hPSC‐derived cells, including the standard separation technologies, such as magnetic‐activated cell sorting, as well as the novel separation strategies, such as those based on adhesion strength and metabolic flux. Specifically, the downstream bioprocessing flow and the identification of surface markers for various cell lineages are discussed. While challenges remain for large‐scale downstream bioprocessing of hPSC‐derived cells, the rational quality‐by‐design approach should be implemented to enhance the understanding of the relationship between process and the product and to ensure the safety of the produced cells.  相似文献   
100.
With the exception of the polysialic acid capsule (K1 antigen), little is known about other virulence factors needed for systemic infection by Escherichia coli K1, the leading cause of Gram-negative neonatal meningitis in humans. In this work, the functional genomics method of signature-tagged mutagenesis (STM) was adapted to E. coli K1 and the infant-rat model to identify non-capsule virulence genes. Validation of the method was demonstrated by the failure to recover a reconstructed acapsular mutant from bacterial pools used to systemically infect 5-day-old rats. Three new genes required for systemic disease were identified from a total of 192 mutants screened by STM (1.56% hit rate). Gut colonization, Southern blot hybridization, mixed-challenge infection, and DNA sequence analyses showed that the attenuating defects in the mutants were associated with transposon insertions in rfaL (O antigen ligase), dsbA (thiol:disulfide oxidoreductase), and a new gene, puvA (previously unidentified virulence gene A), with no known homologues. The results indicate the ability of STM to identify novel systemic virulence factors in E. coli K1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号