首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21073篇
  免费   2029篇
  国内免费   21篇
  23123篇
  2023年   103篇
  2022年   219篇
  2021年   468篇
  2020年   212篇
  2019年   313篇
  2018年   361篇
  2017年   317篇
  2016年   575篇
  2015年   999篇
  2014年   1092篇
  2013年   1293篇
  2012年   1730篇
  2011年   1688篇
  2010年   1124篇
  2009年   896篇
  2008年   1392篇
  2007年   1359篇
  2006年   1239篇
  2005年   1203篇
  2004年   1165篇
  2003年   1092篇
  2002年   1042篇
  2001年   190篇
  2000年   114篇
  1999年   223篇
  1998年   264篇
  1997年   167篇
  1996年   143篇
  1995年   130篇
  1994年   123篇
  1993年   124篇
  1992年   108篇
  1991年   110篇
  1990年   88篇
  1989年   76篇
  1988年   70篇
  1987年   71篇
  1986年   62篇
  1985年   75篇
  1984年   75篇
  1983年   76篇
  1982年   84篇
  1981年   87篇
  1980年   80篇
  1979年   41篇
  1978年   79篇
  1977年   48篇
  1976年   45篇
  1975年   43篇
  1973年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
Time-resolved absorption measurements of the formation and decay kinetics of the M (deprotonated) photocycle intermediate of bR purple membranes entrapped within a dried xerogel glass have been investigated. The dramatic change observed for the M state decay time is in contrast to the relatively insensitive half life reported for the M intermediate of the D96N mutant entrapped within a dried sol-gel glass. The decay kinetics of the M intermediate was observed to slow by a factor of almost 100 when the solvent was removed from the wet-gel to form the dry xerogel glass. Very long aging times for wet-gels resulted in highly biexponential M state decay kinetics. Upon drying, the M state formation rate initially decreased relative to that in solution before increasing in the dry xerogel to a formation rate nearly three times faster than in solution.  相似文献   
912.
913.
914.
Large‐domain species distribution models (SDMs) fail to identify microrefugia, as they are based on climate estimates that are either too coarse or that ignore relevant topographic climate‐forcing factors. Climate station data are considered inadequate to produce such estimates, a viewpoint we challenge here. Using climate stations and topographic data, we developed three sets of large‐domain (450 000 km²), fine‐grain (50 m) temperature grids accounting for different levels of topographic complexity. Using these fine‐grain grids and the Worldclim data, we fitted SDMs for 78 alpine species over Sweden, and assessed over‐ versus underestimations of local extinction and area of microrefugia by comparing modelled distributions at species' rear edges. Accounting for well‐known topographic climate‐forcing factors improved our ability to model fine‐scale climate, despite using only climate station data. This approach captured the effect of cool air pooling, distance to sea, and relative humidity on local‐scale temperature, but the effect of solar radiation could not be accurately accounted for. Predicted extinction rate decreased with increasing spatial resolution of the climate models and with increasing number of topographic climate‐forcing factors accounted for. About half of the microrefugia detected in the most topographically complete models were not detected in the coarser SDMs and in the models calibrated from climate variables extracted from elevation only. Although major limitations remain, climate station data can potentially be used to produce fine‐grain topoclimate grids, opening up the opportunity to model local‐scale ecological processes over large domains. Accounting for the topographic complexity encountered within landscapes permits the detection of microrefugia that would otherwise remain undetected. Topographic heterogeneity is likely to have a massive impact on species persistence, and should be included in studies on the effects of climate change.  相似文献   
915.
Over the last three decades, climate abnormalities have been reported to be involved in biodiversity decline by affecting population dynamics. A growing number of studies have shown that the North Atlantic Oscillation (NAO) influences the demographic parameters of a wide range of plant and animal taxa in different ways. Life history theory could help to understand these different demographic responses to the NAO. Indeed, theory states that the impact of weather variation on a species’ demographic traits should depend on its position along the fast–slow continuum. In particular, it is expected that NAO would have a higher impact on recruitment than on adult survival in slow species, while the opposite pattern is expected occur in fast species. To test these predictions, we used long‐term capture–recapture datasets (more than 15,000 individuals marked from 1965 to 2015) on different surveyed populations of three amphibian species in Western Europe: Triturus cristatus, Bombina variegata, and Salamandra salamandra. Despite substantial intraspecific variation, our study revealed that these three species differ in their position on a slow–fast gradient of pace of life. Our results also suggest that the differences in life history tactics influence amphibian responses to NAO fluctuations: Adult survival was most affected by the NAO in the species with the fastest pace of life (Tcristatus), whereas recruitment was most impacted in species with a slower pace of life (Bvariegata and Ssalamandra). In the context of climate change, our findings suggest that the capacity of organisms to deal with future changes in NAO values could be closely linked to their position on the fast–slow continuum.  相似文献   
916.
Interest has surged recently in removing siblings from population genetic data sets before conducting downstream analyses. However, even if the pedigree is inferred correctly, this has the potential to do more harm than good. We used computer simulations and empirical samples of coho salmon to evaluate strategies for adjusting samples to account for family structure. We compared performance in full samples and sibling‐reduced samples of estimators of allele frequency (), population differentiation () and effective population size (). Results: (i) unless simulated samples included large family groups together with a component of unrelated individuals, removing siblings generally reduced precision of and ; (ii) based on the linkage disequilibrium method was largely unbiased using full random samples but became increasingly upwardly biased under aggressive purging of siblings. Under nonrandom sampling (some families over‐represented), using full samples was downwardly biased; removing just the right ‘Goldilocks’ fraction of siblings could produce an unbiased estimate, but this sweet spot varied widely among scenarios; (iii) weighting individuals based on the inferred pedigree (to produce a best linear unbiased estimator, BLUE) maximized precision of when the inferred pedigree was correct but performed poorly when the pedigree was wrong; (iv) a variant of sibling removal that leaves intact small sibling groups appears to be more robust to errors in inferences about family structure. Our results illustrate the complex challenges posed by presence of family structure, suggest that no single optimal solution exists and argue for caution in adjusting population genetic data sets for the presence of putative siblings without fully understanding the consequences.  相似文献   
917.
918.
POU/TBP cooperativity: a mechanism for enhancer action from a distance   总被引:1,自引:0,他引:1  
  相似文献   
919.
Cellulose, a microfibrillar polysaccharide consisting of bundles of beta-1,4-glucan chains, is a major component of plant and most algal cell walls and is also synthesized by some prokaryotes. Seed plants and bacteria differ in the structures of their membrane terminal complexes that make cellulose and, in turn, control the dimensions of the microfibrils produced. They also differ in the domain structures of their CesA gene products (the catalytic subunit of cellulose synthase), which have been localized to terminal complexes and appear to help maintain terminal complex structure. Terminal complex structures in algae range from rosettes (plant-like) to linear forms (bacterium-like). Thus, algal CesA genes may reveal domains that control terminal complex assembly and microfibril structure. The CesA genes from the alga Mesotaenium caldariorum, a member of the order Zygnematales, which have rosette terminal complexes, are remarkably similar to seed plant CesAs, with deduced amino acid sequence identities of up to 59%. In addition to the putative transmembrane helices and the D-D-D-QXXRW motif shared by all known CesA gene products, M. caldariorum and seed plant CesAs share a region conserved among plants, an N-terminal zinc-binding domain, and a variable or class-specific region. This indicates that the domains that characterize seed plant CesAs arose prior to the evolution of land plants and may play a role in maintaining the structures of rosette terminal complexes. The CesA genes identified in M. caldariorum are the first reported for any eukaryotic alga and will provide a basis for analyzing the CesA genes of algae with different types of terminal complexes.  相似文献   
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号