首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51981篇
  免费   4744篇
  国内免费   41篇
  2023年   229篇
  2022年   520篇
  2021年   1237篇
  2020年   618篇
  2019年   848篇
  2018年   1006篇
  2017年   848篇
  2016年   1524篇
  2015年   2611篇
  2014年   2763篇
  2013年   3250篇
  2012年   4325篇
  2011年   4310篇
  2010年   2709篇
  2009年   2227篇
  2008年   3370篇
  2007年   3307篇
  2006年   3137篇
  2005年   2829篇
  2004年   2786篇
  2003年   2546篇
  2002年   2458篇
  2001年   477篇
  2000年   314篇
  1999年   485篇
  1998年   554篇
  1997年   374篇
  1996年   343篇
  1995年   303篇
  1994年   271篇
  1993年   264篇
  1992年   229篇
  1991年   254篇
  1990年   201篇
  1989年   182篇
  1988年   164篇
  1987年   146篇
  1986年   147篇
  1985年   171篇
  1984年   175篇
  1983年   179篇
  1982年   195篇
  1981年   193篇
  1980年   164篇
  1979年   105篇
  1978年   119篇
  1977年   98篇
  1976年   93篇
  1975年   92篇
  1974年   83篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
72.
This review examines the evidence that skeletal muscles can sense the status of the peripheral vascular network through group III and IV muscle afferent fibers. The anatomic and neurophysiological basis for such a mechanism is the following: 1) a significant portion of group III and IV afferent fibers have been found in the vicinity and the adventitia of the arterioles and the venules; 2) both of these groups of afferent fibers can respond to mechanical stimuli; 3) a population of group III and IV fibers stimulated during muscle contraction has been found to be inhibited to various degrees by arterial occlusion; and 4) more recently, direct evidence has been obtained showing that a part of the group IV muscle afferent fibers is stimulated by venous occlusion and by injection of vasodilatory agents. The physiological relevance of sensing local distension of the vascular network at venular level in the muscles is clearly different from that of the large veins, since the former can directly monitor the degree of tissue perfusion. The possible involvement of this sensing mechanism in respiratory control is discussed mainly in the light of the ventilatory effects of peripheral vascular occlusions during and after muscular exercise. It is proposed that this regulatory system anticipates the chemical changes that would occur in the arterial blood during increased metabolic load and attempts to minimize them by adjusting the level of ventilation to the level of muscle perfusion, thus matching the magnitudes of the peripheral and pulmonary gas exchange.  相似文献   
73.
Observations of historical and recent phytoplankton samples from five hypereutrophic Florida lakes indicate that nitrogen-fixing cyanobacteria in the genus Cylindrospermopsis Seenayya et Subba Raju have entered these water-bodies sometime in the last 30 years. Cylindrospermopsis forms a year-round bloom in one of the five lakes, dominates seasonally in another, and is at least at times an important component of the phytoplankton community in the remaining three. The increase in abundance of Cylindrospermopsis in Florida lakes could have implications for water management.  相似文献   
74.
75.
76.
Parathyroid hormone-related protein (PTHrP) can be secreted from cells and interact with its receptor, the Type 1 PTH/PTHrP Receptor (PTHR1) in an autocrine, paracrine or endocrine fashion. PTHrP can also remain inside cells and be transported into the nucleus, where its functions are unclear, although recent experiments suggest that it may broadly regulate cell survival and senescence. Disruption of either the PTHrP or PTHR1 gene results in many abnormalities including a failure of embryonic mammary gland development in mice and in humans. In order to examine the potential functions of nuclear PTHrP in the breast, we examined mammary gland development in PTHrP (1–84) knock-in mice, which express a mutant form of PTHrP that lacks the C-terminus and nuclear localization signals and which can be secreted but cannot enter the nucleus. Interestingly, we found that PTHrP (1–84) knock-in mice had defects in mammary mesenchyme differentiation and mammary duct outgrowth that were nearly identical to those previously described in PTHrP−/− and PTHR1−/− mice. However, the mammary buds in PTHrP (1–84) knock-in mice had severe reductions in mutant PTHrP mRNA levels, suggesting that the developmental defects were due to insufficient production of PTHrP by mammary epithelial cells and not loss of PTHrP nuclear function. Examination of the effects of nuclear PTHrP in the mammary gland in vivo will require the development of alternative animal models.  相似文献   
77.
Fermentation systems are used to provide an optimal growth environment for many different types of cell cultures. The ability afforded by fermentors to carefully control temperature, pH, and dissolved oxygen concentrations in particular makes them essential to efficient large scale growth and expression of fermentation products. This video will briefly describe the advantages of the fermentor over the shake flask. It will also identify key components of a typical benchtop fermentation system and give basic instruction on setup of the vessel and calibration of its probes. The viewer will be familiarized with the sterilization process and shown how to inoculate the growth medium in the vessel with culture. Basic concepts of operation, sampling, and harvesting will also be demonstrated. Simple data analysis and system cleanup will also be discussed.  相似文献   
78.
79.
80.
High field (400 and 600 MHz) proton NMR spectroscopy has been employed to investigate the thermally-induced autoxidation of glycerol-bound polyunsaturated fatty acids present in intact culinary frying oils and fats. Heating of these materials at 180°C for periods of 30, 60 and 90 min. generated a variety of peroxidation products, notably aldehydes (alkanals, trans-2-alkenals and alka-2, 4-dienals) and their conjugated hydroperoxydiene precursors. Since such aldehydes appear to be absorbed into the systemic circulation from the gut in vivo, the toxicological significance of their production during standard frying practices is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号