首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113082篇
  免费   2248篇
  国内免费   830篇
  2023年   90篇
  2022年   147篇
  2021年   475篇
  2020年   213篇
  2019年   322篇
  2018年   12126篇
  2017年   10907篇
  2016年   7962篇
  2015年   1573篇
  2014年   1356篇
  2013年   1567篇
  2012年   5892篇
  2011年   14363篇
  2010年   12999篇
  2009年   9057篇
  2008年   11060篇
  2007年   12591篇
  2006年   1471篇
  2005年   1693篇
  2004年   2113篇
  2003年   2091篇
  2002年   1794篇
  2001年   424篇
  2000年   259篇
  1999年   232篇
  1998年   266篇
  1997年   177篇
  1996年   146篇
  1995年   124篇
  1994年   123篇
  1993年   145篇
  1992年   124篇
  1991年   134篇
  1990年   94篇
  1989年   86篇
  1988年   73篇
  1987年   80篇
  1986年   53篇
  1985年   69篇
  1984年   82篇
  1983年   91篇
  1982年   84篇
  1981年   81篇
  1980年   81篇
  1978年   67篇
  1977年   47篇
  1975年   45篇
  1972年   259篇
  1971年   281篇
  1962年   45篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
942.
The type VI secretion system (T6SS) is a versatile secretion machine dedicated to various functions in Gram-negative bacteria, including virulence toward eukaryotic cells and antibacterial activity. Activity of T6SS might be followed in vitro by the release of two proteins, Hcp and VgrG, in the culture supernatant. Citrobacter rodentium, a rodent pathogen, harbors two T6SS gene clusters, cts1 and cts2. Reporter fusion and Hcp release assays suggested that the CTS1 T6SS was not produced or not active. The cts1 locus is composed of two divergent operons. We therefore developed a new vector allowing us to swap the two divergent endogenous promoters by Ptac and PBAD using the λ red recombination technology. Artificial induction of both promoters demonstrated that the CTS1 T6SS is functional as shown by the Hcp release assay and confers on C. rodentium a growth advantage in antibacterial competition experiments with Escherichia coli.  相似文献   
943.
944.
The ascomycete Podospora anserina is a coprophilous fungus that grows at late stages on droppings of herbivores. Its genome encodes a large diversity of carbohydrate-active enzymes. Among them, four genes encode glycoside hydrolases from family 6 (GH6), the members of which comprise putative endoglucanases and exoglucanases, some of them exerting important functions for biomass degradation in fungi. Therefore, this family was selected for functional analysis. Three of the enzymes, P. anserina Cel6A (PaCel6A), PaCel6B, and PaCel6C, were functionally expressed in the yeast Pichia pastoris. All three GH6 enzymes hydrolyzed crystalline and amorphous cellulose but were inactive on hydroxyethyl cellulose, mannan, galactomannan, xyloglucan, arabinoxylan, arabinan, xylan, and pectin. PaCel6A had a catalytic efficiency on cellotetraose comparable to that of Trichoderma reesei Cel6A (TrCel6A), but PaCel6B and PaCel6C were clearly less efficient. PaCel6A was the enzyme with the highest stability at 45°C, while PaCel6C was the least stable enzyme, losing more than 50% of its activity after incubation at temperatures above 30°C for 24 h. In contrast to TrCel6A, all three studied P. anserina GH6 cellulases were stable over a wide range of pHs and conserved high activity at pH values of up to 9. Each enzyme displayed a distinct substrate and product profile, highlighting different modes of action, with PaCel6A being the enzyme most similar to TrCel6A. PaCel6B was the only enzyme with higher specific activity on carboxymethylcellulose (CMC) than on Avicel and showed lower processivity than the others. Structural modeling predicts an open catalytic cleft, suggesting that PaCel6B is an endoglucanase.  相似文献   
945.
Cell membranes are the primary sites of cryopreservation injury and measuring changes to membrane composition arising from cold acclimation may assist with providing a rationale for optimising cryopreservation methods. Shoot tips from two south-west Western Australian species, Grevillea scapigera and Loxocarya cinerea, and Arabidopsis thaliana (reference species) were subjected to cryopreservation using the droplet vitrification protocol. Two pre-conditioning regimes involving a constant temperature (23 °C, CT with a 12 h light/dark cycle) or an alternating temperature (AT) regime (20/10 °C with a 12 h light/dark cycle) were compared. Soluble sugars, sterols and phospholipids present in the shoot tips were analysed. Use of AT pre-conditioning (acclimation) resulted in a modest decrease in cryotolerance in A. thaliana, increased cryotolerance in G. scapigera, and increased survival in the non-frozen control explants of L. cinerea in comparison to CT pre-conditioning. Increased cryotolerance was accompanied by a higher total sugar sterol and phospholipid content, as well as an increase in strong hydrating phospholipid classes such as phosphatidylcholine. The double bond index of bound fatty acyl chains of phospholipids was greater after AT pre-conditioning, mostly due to a higher amount of monoenes in A. thaliana and trienes in G. scapigera and L. cinerea. These findings suggest that AT pre-conditioning treatments for in vitro plants can have a positive influence on cryotolerance for some plant species and this may be related to observed changes in the overall composition of cell membranes. However, alternative factors (e.g. oxidative stress) may be equally important with other species (e.g. L. cinerea).  相似文献   
946.
947.
Micro-organisms are vital for the functioning of all food webs and are the major drivers of the global biogeochemical cycles. The microbial community compositions and physicochemical conditions of the different water masses in the North Sea, a biologically productive sea on the northwestern European continental shelf, were studied during two summer cruises, in order to provide detailed baseline data for this region and examine its microbial biogeography. For each cruise the stations were clustered according to their physicochemical characteristics and their microbial community composition. The largest cluster, which covered most of the central and northern North Sea, consisted of stations that were characterized by a thermally stratified water column and had low chlorophyll a autofluorescence and generally low microbial abundances. The second main cluster contained stations that were dominated by picoeukaryotes and showed the influence of influxes of North Atlantic water via the English Channel and south of the Shetland Islands. The third main cluster was formed by stations that were dominated by cyanobacteria and nanoeukaryotes in the reduced salinity Norwegian Coastal and Skagerrak waters, while the fourth cluster represented the German Bight, a region with strong riverine input, high nutrient concentrations, and consequently high heterotrophic bacterial and viral abundances. Despite the complex and dynamic hydrographic nature of the North Sea, the consistent distinctions in microbiology between these different hydrographic regions during both cruises illustrate the strong links between the microbial community and its environment, as well as the possibility to use microorganisms for long-term monitoring of environmental change.  相似文献   
948.
The early Earth’s atmosphere, with extremely low levels of molecular oxygen and an appreciable abiotic flux of methane, could have been a source of organic compounds necessary for prebiotic chemistry. Here, we investigate the formation of a key RNA precursor, glycolaldehyde (2-hydroxyacetaldehyde, or GA) using a 1-dimensional photochemical model. Maximum atmospheric production of GA occurs when the CH4:CO2 ratio is close to 0.02. The total atmospheric production rate of GA remains small, only 1×107 mol yr???1. Somewhat greater amounts of GA production, up to 2 × 108 mol yr???1, could have been provided by the formose reaction or by direct delivery from space. Even with these additional production mechanisms, open ocean GA concentrations would have remained at or below ~1 μM, much smaller than the 1–2 M concentrations required for prebiotic synthesis routes like those proposed by Powner et al. (Nature 459:239–242, 2009). Additional production or concentration mechanisms for GA, or alternative formation mechanisms for RNA, are needed, if this was indeed how life originated on the early Earth.  相似文献   
949.
The Okavango River, in semi-arid northwestern Botswana, flows for over 400 km in a pristine wetland developed on a large (>22,000 km2) alluvial fan (Okavango Delta). An annual flood pulse inundates the floodplains of the wetlands and travels across the Delta in 4–6 months. In this study, we assess the effects of long hydraulic residence time, variable hydrologic interaction between river–floodplain–wetland and evapotranspiration on carbon cycling. We measured dissolved inorganic carbon (DIC) concentrations and stable carbon isotopes of DIC (δ13CDIC) from river water when the Delta was not flooded (low water) and during flooding (high water). During low water, the average DIC concentration was 31 % higher and the δ13CDIC 2.1 ‰ more enriched compared to high water. In the lower Delta with seasonally flooded wetlands, the average DIC concentration increased by 70 % during low water and by 331 % during high water compared to the Panhandle with permanently flooded wetlands. The increasing DIC concentration downriver is mostly due to evapoconcentration from transpiration and evaporation with increased transit time. The average δ13CDIC between low and high water decreased by 3.7 ‰ in the permanently flooded reaches compared to an increase of 1.6 ‰ in the seasonally flooded reaches. The lower δ13CDIC during high water in the permanently flooded reaches suggest that DIC influx from the floodplain-wetland affects river’s DIC cycling. In contrast, higher river channel elevations relative to the wetlands along seasonal flooded reaches limit hydrologic interaction and DIC cycling occurs mostly by water column processes and river-atmospheric exchange. We conclude that river-wetlands interaction and evapoconcentration are important factors controlling carbon cycling in the Okavango Delta.  相似文献   
950.
Stress associated proteins (SAP) have been already reported to play a role in tolerance acquisition of some abiotic stresses. In the present study, the role of MtSAP1 (Medicago truncatula) in tolerance to temperature, osmotic and salt stresses has been studied in tobacco transgenic seedlings. Compared to wild type, MtSAP1 overexpressors were less affected in their growth and development under all tested stress conditions. These results confirm that MtSAP1 is involved in the response processes to various abiotic constraints. In parallel, we have performed studies on an eventual link between MtSAP1 overexpression and proline, a major player in stress response. In an interesting way, the results for the transgenic lines did not show any increase of proline content under osmotic and salt stress, contrary to the WT which usually accumulated proline in response to stress. These data strongly suggest that MtSAP1 is not involved in signaling pathway responsible for the proline accumulation in stress conditions. This could be due to the fact that the overexpression of MtSAP1 provides sufficient tolerance to seedlings to cope with stress without requiring the free proline action. Beyond that, the processes by which the MtSAP1 overexpression lead to the suppression of proline accumulation will be discussed in relation with data from our previous study involving nitric oxide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号