首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528564篇
  免费   55840篇
  国内免费   1020篇
  2018年   15175篇
  2017年   13854篇
  2016年   12286篇
  2015年   8203篇
  2014年   9083篇
  2013年   12766篇
  2012年   18020篇
  2011年   26409篇
  2010年   20931篇
  2009年   16592篇
  2008年   21785篇
  2007年   23575篇
  2006年   12241篇
  2005年   12043篇
  2004年   12141篇
  2003年   12079篇
  2002年   11450篇
  2001年   20229篇
  2000年   20312篇
  1999年   16051篇
  1998年   5809篇
  1997年   6263篇
  1996年   5942篇
  1995年   5534篇
  1994年   5423篇
  1993年   5558篇
  1992年   13551篇
  1991年   13381篇
  1990年   12744篇
  1989年   12505篇
  1988年   11456篇
  1987年   11065篇
  1986年   10315篇
  1985年   10309篇
  1984年   8628篇
  1983年   7488篇
  1982年   5793篇
  1981年   5140篇
  1980年   4963篇
  1979年   8087篇
  1978年   6514篇
  1977年   5930篇
  1976年   5578篇
  1975年   6122篇
  1974年   6296篇
  1973年   6224篇
  1972年   5837篇
  1971年   5399篇
  1970年   4293篇
  1969年   4157篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Abstract

The conformations of the chains constituting the hydrophilic component of alkyl monolayers and bilayers are investigated by performing molecular dynamics atomistic simulations on these systems at different temperatures. Several monitoring techniques are used to reveal the chain conformations, including atom pair radial distribution functions, evolutions of the torsional angles over thousands of timesteps, frequency distributions of the torsionl angles and ‘snapshot’ plots of the atomic configurations. These methods consistently testify to the stability of the trans (fully extended) character of the strain-free alkyl chains up to room temperature. The chains retain much of this conformation even when the layers are compressed by the application of pressure, to which the chains respond by ‘folding’ at the ends attaching them to the substrate planes while maintaining directions which are mainly normal to these planes. A non-zero gap between the layers is also maintained. A pressure of about 50 kbar abruptly causes all motion in the chains to cease, resulting in a highly ordered lattice structure.  相似文献   
932.
Diuron belongs to the family of halogenophenylureas, one of the main groups of herbicides used for more than 40 years. These herbicides absorb sunlight and can be photochemically transformed in the environment (herbicides are transformed on the soil surface exposed to sunlight) or biotransformed by microorganisms present in soil or in water. The metabolites (chlorohydroxyphenylurea, chlorophenylaniline, respectively) are more toxic than the parent compound, as demonstrated by a bioluminescence inhibition assay performed with a marine bacterium (Vibrio fischeri toxicity test). The lipophilicity of these pesticides makes the cell membrane a target for their action, especially the spermatozoa cell membrane. The aim of this study is to use human spermatozoa to evaluate the effect of this urea pesticide and its biotransformed product on the spermatozoa membrane. We investigated the structural and functional effects of these environmental pollutants on spermatozoa. Three million spermatozoa purified on a 95/47.5% Percoll gradient were suspended in 250 μl of modified Earle’s medium (without phenol red) supplemented with 7.5% of human decomplemented serum. Pesticides (Diuron or 3,4-dichloroaniline (3,4-DCA)) were added at a final concentration of 0.1; 1 and 5 mM. Samples were incubated at room temperature for 24 hours. We show that both Diuron and 3,4-DCA decrease motility and vitality of spermatozoa incubated with the highest concentration of pesticides. Our preliminary results show that the effects are more rapid and more intense with the biotransformed product (3,4-DCA) than with Diuron. Addition of herbicide to human spermatozoa increases membrane fluidity, assessed by measuring the fluorescence polarisation anisotropy with a fluorescent probe: 1,6-diphenyl-1,3,5-hexatriene (DPH). Changes in membrane fluidity may be a primary toxic effect of these herbicides. These results suggest that human spermatozoa may constitute a valuable indicator of the toxic effects of pesticides.  相似文献   
933.
934.
935.
Kenya is endemic for cholera with different waves of outbreaks having been documented since 1971. In recent years, new variants of Vibrio cholerae O1 have emerged and have replaced most of the traditional El Tor biotype globally. These strains also appear to have increased virulence, and it is important to describe and document their phenotypic and genotypic traits. This study characterized 146 V. cholerae O1 isolates from cholera outbreaks that occurred in Kenya between 1975 and 2017. Our study reports that the 1975–1984 strains had typical classical or El Tor biotype characters. New variants of V. cholerae O1 having traits of both classical and El Tor biotypes were observed from 2007 with all strains isolated between 2015 and 2017 being sensitive to polymyxin B and carrying both classical and El Tor type ctxB. All strains were resistant to Phage IV and harbored rstR, rtxC, hlyA, rtxA and tcpA genes specific for El Tor biotype indicating that the strains had an El Tor backbone. Pulsed field gel electrophoresis (PFGE) genotyping differentiated the isolates into 14 pulsotypes. The clustering also corresponded with the year of isolation signifying that the cholera outbreaks occurred as separate waves of different genetic fingerprints exhibiting different genotypic and phenotypic characteristics. The emergence and prevalence of V. cholerae O1 strains carrying El Tor type and classical type ctxB in Kenya are reported. These strains have replaced the typical El Tor biotype in Kenya and are potentially more virulent and easily transmitted within the population.  相似文献   
936.
937.
Our aim was to define optimal conditions for efficient and reproducible albumin mRNA detection in rat liver by in situ hybridization. We used an albumin-specific [3H]-labeled cDNA probe with a specific activity of 6-8.10(6) cpm/microgram DNA. In situ hybridization is as efficient on paraffin sections as on cryostat sections for detecting albumin mRNAs. Perfusion fixation with a 4% paraformaldehyde solution results in homogeneous RNA retention within tissue blocks, in contrast with immersion fixation, which yields heterogeneous RNA preservation. Comparison of immersion fixation with three different fixatives (paraformaldehyde, ethanol-acetic acid, and Bouin's fixative) shows that the highest level of hybridization signal is obtained with paraformaldehyde. Ethanol-acetic acid and Bouin's fixative appear less efficient for albumin mRNA detection. Loss of mRNAs within liver tissue blocks over time is largely although not completely prevented by paraffin embedding.  相似文献   
938.
Acrodipsas mortoni sp.n. from inland New South Wales and southern Queensland is described, figured, contrasted with the related A. arcana (Miller and Edwards) and assigned to the illidgei species-group.  相似文献   
939.
[3H] Nitrendipine binding was partially blocked by the presence of tetrodotoxin in developing spinal cord neurons. In young cultures, 1 micron tetrodotoxin displaced 29% and 26% of [3H] nitrendipine binding from the high and low affinity binding sites, respectively. In one month old cultures, tetrodotoxin had no effect on [3H] nitrendipine binding. The interaction between tetrodotoxin and nitrendipine in young cultures suggests ligand binding site similarities during development.  相似文献   
940.
Summary Diffusion potential of potassium ions was formed in unilamellar vesicles of phosphatidyl choline. The vesicles, which included potassium sulfate buffered with potassium phosphate, were diluted into an analogous salt solution made of sodium sulfate and sodium phosphate. The diffusion potential was created by the addition of the potassium-ionophore, valinomycin. The change in lipid microviscosity, ensuing the formation of membrane potential, was measured by the conventional method of fluorescence depolarization with 1,6-diphenyl-1,3,5-hexatriene as a probe. Lipid microviscosity was found to increase with membrane potential in a nonlinear manner, irrespective of the potential direction. Two tentative interpretations are proposed for this observation. The first assumes that the membrane potential imposes an energy barrier on the lipid flow which can be treated in terms of Boltzmann-distribution. The other interpretation assumes a decrease in lipid-free volume due to the pressure induced by the electrical potential. Since increase in lipid viscosity can reduce lateral and rotational motions, as well as increase exposure of functional membrane proteins, physiological effects induced by transmembrane potential could be associated with such dynamic changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号