首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   795篇
  免费   59篇
  国内免费   2篇
  2023年   1篇
  2022年   8篇
  2021年   16篇
  2020年   10篇
  2019年   14篇
  2018年   20篇
  2017年   19篇
  2016年   28篇
  2015年   41篇
  2014年   42篇
  2013年   51篇
  2012年   72篇
  2011年   72篇
  2010年   46篇
  2009年   28篇
  2008年   52篇
  2007年   47篇
  2006年   50篇
  2005年   59篇
  2004年   53篇
  2003年   40篇
  2002年   29篇
  2001年   9篇
  2000年   7篇
  1999年   4篇
  1998年   9篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   11篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1967年   1篇
排序方式: 共有856条查询结果,搜索用时 15 毫秒
171.
Listeria monocytogenes is an important cause of human foodborne infections and its ability to form biofilms is a serious concern to the food industry. To reveal the effect of glucose conditions on biofilm formation of L. monocytogenes, 20 strains were investigated under three glucose conditions (0.1, 1.0, and 2.0% w v–1) by quantifying the number of cells in the biofilm and observing the biofilm structure after incubation for 24, 72, and 168 h. In addition, the biofilms were examined for their sensitivity to sodium hypochlorite. It was found that high concentrations of glucose reduced the number of viable cells in the biofilms and increased extracellular polymeric substance production. Moreover, biofilms formed at a glucose concentration of 1.0 or 2.0% were more resistant to sodium hypochlorite than those formed at a glucose concentration of 0.1%. This knowledge can be used to help design the most appropriate sanitation strategy.  相似文献   
172.
Hypochlorous acid (HOCl) is produced naturally by neutrophils and other cells to kill conventional microbes in vivo. Synthetic preparations containing HOCl can also be effective as microbial disinfectants. Here we have tested whether HOCl can also inactivate prions and other self-propagating protein amyloid seeds. Prions are deadly pathogens that are notoriously difficult to inactivate, and standard microbial disinfection protocols are often inadequate. Recommended treatments for prion decontamination include strongly basic (pH ≥~12) sodium hypochlorite bleach, ≥1 N sodium hydroxide, and/or prolonged autoclaving. These treatments are damaging and/or unsuitable for many clinical, agricultural and environmental applications. We have tested the anti-prion activity of a weakly acidic aqueous formulation of HOCl (BrioHOCl) that poses no apparent hazard to either users or many surfaces. For example, BrioHOCl can be applied directly to skin and mucous membranes and has been aerosolized to treat entire rooms without apparent deleterious effects. Here, we demonstrate that immersion in BrioHOCl can inactivate not only a range of target microbes, including spores of Bacillus subtilis, but also prions in tissue suspensions and on stainless steel. Real-time quaking-induced conversion (RT-QuIC) assays showed that BrioHOCl treatments eliminated all detectable prion seeding activity of human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, cervine chronic wasting disease, sheep scrapie and hamster scrapie; these findings indicated reductions of ≥103- to 106-fold. Transgenic mouse bioassays showed that all detectable hamster-adapted scrapie infectivity in brain homogenates or on steel wires was eliminated, representing reductions of ≥~105.75-fold and >104-fold, respectively. Inactivation of RT-QuIC seeding activity correlated with free chlorine concentration and higher order aggregation or destruction of proteins generally, including prion protein. BrioHOCl treatments had similar effects on amyloids composed of human α-synuclein and a fragment of human tau. These results indicate that HOCl can block the self-propagating activity of prions and other amyloids.  相似文献   
173.
Individual water-soluble molecules of the protein ferritin have been imaged on a silicon surface in pure water at room temperature with the atomic force microscope (AFM). The ferritin molecules formed an ordered monolayer by binding to a charged polypeptide monolayer of poly-1-benzyl-L-histidine (PBLH) spread at the air-water interface. The film, fully wetted with water, was horizontally transferred onto an alkylated silicon wafer for AFM imagings. The hexagonal arrangement of ferritin molecules was imaged with high reproducibility on the whole surface of the film, since the forces between cantilever and the sample could be kept sufficiently smaller than 10-10 N, mainly due to a “self-screening effect” of the surface charges of the ferritin-PBLH layer. This is the first observation of two-dimensional ordered arrays of water-soluble protein molecules directly confirmed by AFM with molecular resolution.  相似文献   
174.
A photosensitive nitrile hydratase from Rhodococcus sp. N-771 has been crystallized in two different crystal forms in its inactive form. One crystal form belongs to an orthorhombic space group P2(1)2(1)2 with unit cell dimensions of a = 117.4 A, b = 145.7 A and c = 52.1 A, and the other form belongs to a hexagonal space group P6(3)22 with unit cell dimensions of a = 110.2 A and c = 412.1 A.  相似文献   
175.
Maintaining specific cell size, which is important for many organisms, is achieved by coordinating cell growth and cell division. In the budding yeast Saccharomyces cerevisiae, the existence of two cell-size checkpoints is proposed: at the first checkpoint, cell size is monitored before budding at the G1/S transition, and at the second checkpoint, actin depolymerization occurring in the small bud is monitored before the G2/M transition. Morphological analyses have revealed that the small GTPase Rho1p participates in cell-size control at both the G1/S and the G2/M boundaries. One group of rho1 mutants (rho1A) underwent premature entry into mitosis, leading to the birth of abnormally small cells. In another group of rho1 mutants (rho1B), the mother cells failed to reach an appropriate size before budding, and expression of the G1 cyclin Cln2p began at an earlier phase of the cell cycle. Analyses of mutants defective in Rho1p effector proteins indicate that Skn7p, Fks1p and Mpk1p are involved in cell-size control. Thus, Rho1p and its downstream regulatory pathways are involved in controlling cell size in S. cerevisiae.  相似文献   
176.

Background

In single-cell human genome analysis using whole-genome amplified product, a strong amplification bias involving allele dropout and preferential amplification hampers the quality of results. Using an oligonucleotide single nucleotide polymorphism (SNP) array, we systematically examined the nature of this amplification bias, including frequency, degree, and preference for genomic location, and we assessed the effects of this amplification bias on subsequent genotype and chromosomal copy number analyses.

Methodology/Principal Findings

We found a large variability in amplification bias among the amplified products obtained by multiple displacement amplification (MDA), and this bias had a severe effect on the genotype and chromosomal copy number analyses. We established optimal experimental conditions for pre-screening for high-quality amplified products, processing array data, and analyzing chromosomal structural alterations. Using this optimized protocol, we successfully detected previously unidentified chromosomal structural alterations in single cells from a lymphoblastoid cell line. These alterations were subsequently confirmed by karyotype analysis. In addition, we successfully obtained reproducible chromosomal copy number profiles of single cells from the cell line with a complex karyotype, indicating the applicability and potential of our optimized workflow.

Conclusions/Significance

Our results suggest that the quality of amplification products should be critically assessed before using them for genomic analyses. The method of MDA-based whole-genome amplification followed by SNP array analysis described here will be useful for exploring chromosomal alterations in single cells.  相似文献   
177.
The aggregation and fibrillation of alpha-synuclein has been implicated as a causative factor in the Parkinson's disease. The hexamer motif KTKEGV is found in each of the seven imperfect repeat sequences in the N-terminal half of alpha-synuclein. The motif is not fully conserved in the sixth and seventh repeats. We created mutants in which the motif was repaired to be fully conserved in either (Rep6 and Rep7) or both (Rep67) of these two repeats. The Rep6 and Rep67 mutants showed a greatly reduced propensity to aggregate and fibrillate while all three mutants showed greater resistance to HFIP-induced formation of the alpha-helix intermediate. Resistance to formation in the partially folded intermediate may repress the folding of alpha-synuclein, consequently interfering with the aggregation and fibril formation. These results demonstrated that KTKEGV repeats may have a significant role in keeping native unfolded status of alpha-synuclein.  相似文献   
178.
Necrosis, a kind of cell death closely associated with pathogenesis and genetic programs, is distinct from apoptosis in both morphology and mechanism. Like apoptotic cells, necrotic cells are swiftly removed from animal bodies to prevent harmful inflammatory and autoimmune responses. In the nematode Caenorhabditis elegans, gain-of-function mutations in certain ion channel subunits result in the excitotoxic necrosis of six touch neurons and their subsequent engulfment and degradation inside engulfing cells. How necrotic cells are recognized by engulfing cells is unclear. Phosphatidylserine (PS) is an important apoptotic-cell surface signal that attracts engulfing cells. Here we observed PS exposure on the surface of necrotic touch neurons. In addition, the phagocytic receptor CED-1 clusters around necrotic cells and promotes their engulfment. The extracellular domain of CED-1 associates with PS in vitro. We further identified a necrotic cell-specific function of CED-7, a member of the ATP-binding cassette (ABC) transporter family, in promoting PS exposure. In addition to CED-7, anoctamin homolog-1 (ANOH-1), the C. elegans homolog of the mammalian Ca2+-dependent phospholipid scramblase TMEM16F, plays an independent role in promoting PS exposure on necrotic cells. The combined activities from CED-7 and ANOH-1 ensure efficient exposure of PS on necrotic cells to attract their phagocytes. In addition, CED-8, the C. elegans homolog of mammalian Xk-related protein 8 also makes a contribution to necrotic cell-removal at the first larval stage. Our work indicates that cells killed by different mechanisms (necrosis or apoptosis) expose a common “eat me” signal to attract their phagocytic receptor(s); furthermore, unlike what was previously believed, necrotic cells actively present PS on their outer surfaces through at least two distinct molecular mechanisms rather than leaking out PS passively.  相似文献   
179.
For nearly 20 years, the principal biological function of the HIV-2/SIV Vpx gene has been thought to be required for optimal virus replication in myeloid cells. Mechanistically, this Vpx activity was recently reported to involve the degradation of Sterile Alpha Motif and HD domain-containing protein 1 (SAMHD1) in this cell lineage. Here we show that when macaques were inoculated with either the T cell tropic SIVmac239 or the macrophage tropic SIVmac316 carrying a Vpx point mutation that abrogates the recruitment of DCAF1 and the ensuing degradation of endogenous SAMHD1 in cultured CD4+ T cells, virus acquisition, progeny virion production in memory CD4+ T cells during acute infection, and the maintenance of set-point viremia were greatly attenuated. Revertant viruses emerging in two animals exhibited an augmented replication phenotype in memory CD4+ T lymphocytes both in vitro and in vivo, which was associated with reduced levels of endogenous SAMHD1. These results indicate that a critical role of Vpx in vivo is to promote the degradation of SAMHD1 in memory CD4+ T lymphocytes, thereby generating high levels of plasma viremia and the induction of immunodeficiency.  相似文献   
180.
A set of 16 previously synthesized aryl-aminopyridine and aryl-aminoquinoline derivatives have been evaluated for cytotoxic activity against three cancer cell lines (human cervical cancer-HeLa; human chronic myeloid leukemia-K562; human melanoma-Fem-x) and two types of normal peripheral blood mononuclear cells, with and without phytohemaglutinin (PBMC-PHA; PBMC+PHA). Twelve of the studied compounds showed moderate cytotoxicity, with selectivity against K562 but not the remaining two cancer cell lines. Four compounds were not active in cytotoxicity assays, presumably due to high predicted lipophilicity and low solubility. To rationalize the observed cytotoxic effects, structure-based virtual screening was carried out against a pool of potential targets constructed using the inverse docking program Tarfisdock and bibliographical references. The putative targets were identified on the basis of the best correlation between docking scores and in vitro cytotoxicity. It is proposed that the mechanism of action of the studied aminopyridines involves the disruption of signaling pathways and cancer cell cycle through the inhibition of cyclin-dependent kinases and several tyrosine kinases, namely Bcr-Abl kinase and KIT receptor kinase. The obtained results can guide further structural modifications of the studied compounds aimed at developing selective agents targeting proteins involved in cancer cell survival and proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号