首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2777篇
  免费   214篇
  2991篇
  2022年   20篇
  2021年   30篇
  2020年   20篇
  2019年   31篇
  2018年   54篇
  2017年   40篇
  2016年   56篇
  2015年   90篇
  2014年   88篇
  2013年   191篇
  2012年   158篇
  2011年   142篇
  2010年   102篇
  2009年   73篇
  2008年   135篇
  2007年   152篇
  2006年   137篇
  2005年   139篇
  2004年   144篇
  2003年   125篇
  2002年   121篇
  2001年   97篇
  2000年   75篇
  1999年   69篇
  1998年   34篇
  1997年   28篇
  1996年   17篇
  1995年   21篇
  1994年   20篇
  1993年   15篇
  1992年   46篇
  1991年   51篇
  1990年   56篇
  1989年   65篇
  1988年   42篇
  1987年   44篇
  1986年   29篇
  1985年   24篇
  1984年   11篇
  1983年   11篇
  1982年   12篇
  1981年   18篇
  1979年   15篇
  1978年   10篇
  1977年   11篇
  1975年   13篇
  1974年   22篇
  1973年   9篇
  1972年   11篇
  1967年   9篇
排序方式: 共有2991条查询结果,搜索用时 15 毫秒
71.
The in vitro antioxidative activity of 5,6,7,8-tetrahydrobiopterin (BPH4) was measured and the ability of BPH4 to prevent paraquat-induced cell damage was examined in cultured hepatocytes. The scavenging activity of BPH4 against superoxide anion radicals was assayed in two systems, i.e., xanthine/xanthine oxidase (X/XOD) and rat macrophage/phorbol myristate acetate (MξPMA) radical-generating systems. BPH4 showed an extremely strong superoxide anion radical-scavenging activity in both assay systems. Biopterin (BP) itself did not show any activity in the X/XOD system, but was effective in the MξPMA system. The antioxidative activities of BPH4 against both superoxide anion and hydroxyl radicals were confirmed by spin trapping-ESR spectrometry. BPH4 also protected rat brain homogenate against auto-oxidation. We further examined the effect of BPH4 on paraquat-induced cell toxicity in cultured rat hepatocytes. The paraquat-induced elevation of the release of lactate dehydrogenase (LDH), a marker enzyme for cytotoxicity from cultured hepatocytes was suppressed by BPH4 in a dose-dependent manner. The elevation of lipid peroxides simultaneously induced by paraquat was also inhibited by BPH4 in the same manner. These results suggest that BPH4 might be useful in the treatment of various diseases whose pathogenesis is active oxygen-related.  相似文献   
72.
Summary Snell dwarf mice display remarkable retardation of growth after birth and are known to lack prolactin (PRL), thyroid stimulating hormone (TSH) and growth hormone (GH). The aim of this study was to determine the reason for these hormonal deficiencies. We examined the fine structure of the gland and its immunohistochemical staining pattern with respect to antisera raised against PRL, TSH, GH, adrenocorticotrophic hormone (ACTH) and luteinizing hormone (LH). The gland of control mice reacted immunohistochemically against all antisera used, whereas only ACTH-producing cells (ACTH cells) and LH-producing cells (LH cells) were distinguished in the dwarf mice. ACTH cells in dwarf mice varied in cell shape, although they were similar in size to those of controls. The distribution of secretory granules in the cytoplasm varied from cell to cell. LH cells in the dwarf mice showed immature features, having poorly developed rough endoplasmic reticulum and Golgi apparatus. The cells were about half the size of controls, and secretory granules were smaller. In dwarf mice, non-granulated cells were encountered in addition to granulated ACTH and LH cells. Some of them formed small clusters, characteristic cell junctions being found between the cells; they thus appeared to be follicular cells. The above results suggest that hormone deficiency in Snell dwarf mice is a result of a defect in the hormoneproducing cells in the gland.  相似文献   
73.
Suprapta  Dewa Ngurah  Arai  Kei  Iwai  Hisashi 《Mycoscience》1996,37(1):105-107
Parasitic specialization ofGeotrichum candidum citrus race, the causal agent of citrus sour rot, was investigated. Of seven isolates tested for pathogenecity, all could infect ten species of citrus fruits and edible parts of five species of noncitrus crops. Only one isolate (Ap2), isolated from soil of an apple orchard, could infect apple fruit.  相似文献   
74.
75.
Trisomies 18 and 21 are genetic disorders in which cells possess an extra copy of each of the relevant chromosomes. Individuals with these disorders who survive birth generally have a shortened life expectancy. As telomeres are known to play an important role in the maintenance of genomic integrity by protecting the chromosomal ends, we conducted a study to determine whether there are differences in telomere length at birth between individuals with trisomy and diploidy, and between trisomic chromosomes and normal chromosomes. We examined samples of peripheral blood lymphocytes (PBLs) from 31 live neonates (diploidy: 10, trisomy 18: 10, trisomy 21: 11) and estimated the telomere length of each chromosome arm using Q-FISH. We observed that the telomeres of trisomic chromosomes were neither shorter nor longer than the mean telomere length of chromosomes as a whole among subjects with trisomies 18 and 21 (intra-cell comparison), and we were unable to conclude that there were differences in telomere length between 18 trisomy and diploid subjects, or between 21 trisomy and diploid subjects (inter-individual comparison). Although it has been reported that telomeres are shorter in older individuals with trisomy 21 and show accelerated telomere shortening with age, our data suggest that patients with trisomies 18 and 21 may have comparably sized telomeres. Therefore, it would be advisable for them to avoid lifestyle habits and characteristics such as obesity, cigarette smoking, chronic stress, and alcohol intake, which lead to marked telomere shortening.  相似文献   
76.
Cell motility is highly dependent on the organization and function of microdomains composed of integrin, proteolipid/tetraspanin CD9, and ganglioside (Ono, M., Handa, K., Sonnino, S., Withers, D. A., Nagai, H., and Hakomori, S. (2001) Biochemistry 40, 6414-6421; Kawakami, Y., Kawakami, K., Steelant, W. F. A., Ono, M., Baek, R. C., Handa, K., Withers, D. A., and Hakomori, S. (2002) J. Biol. Chem. 277, 34349-34358), later termed "glycosynapse 3" (Hakomori, S., and Handa, K. (2002) FEBS Lett. 531, 88-92, 2002). Human bladder cancer cell lines KK47 (noninvasive and nonmetastatic) and YTS1 (highly invasive and metastatic), both derived from transitional bladder epithelia, are very similar in terms of integrin composition and levels of tetraspanin CD9. Tetraspanin CD82 is absent in both. The major difference is in the level of ganglioside GM3, which is several times higher in KK47 than in YTS1. We now report that the GM3 level reflects glycosynapse function as follows: (i) a stronger interaction of integrin alpha3 with CD9 in KK47 than in YTS1; (ii) conversion of benign, low motility KK47 to invasive, high motility cells by depletion of GM3 by P4 (D-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol) treatment or by knockdown of CD9 by the RNA interference method; (iii) reversion of high motility YTS1 to low motility phenotype like that of KK47 by exogenous GM3 addition, whereby the alpha3-to-CD9 interaction was enhanced; (iv) low GM3 level activated c-Src in YTS1 or in P4-treated KK47, and high GM3 level by exogenous addition caused Csk translocation into glycosynapse, with subsequent inhibition of c-Src activation; (v) inhibition of c-Src by "PP2" in YTS1 greatly reduced cell motility. Thus, GM3 in glycosynapse 3 plays a dual role in defining glycosynapse 3 function. One is by modulating the interaction of alpha3 with CD9; the other is by activating or inhibiting the c-Src activity, possibly through Csk translocation. High GM3 level decreases tumor cell motility/invasiveness, whereas low GM3 level enhances tumor cell motility/invasiveness. Oncogenic transformation and its reversion can be explained through the difference in glycosynapse organization.  相似文献   
77.
Mitochondrial β-oxidation is an important system involved in the energy production of various cells. In this system, the function of l-carnitine is essential for the uptake of fatty acids to mitochondria. However, it is unclear whether or not endogenous respiration, ADP-induced O2 consumption without substrates, is caused by l-carnitine treatment. In this study, we investigated whether l-carnitine is essential to the β-oxidation of quarried fatty acids from the mitochondrial membrane by phospholipase A2 (PLA2) using isolated mitochondria from the liver of rats. Intact mitochondria were incubated in a medium containing Pi, CoA and l-carnitine. The effect of l-carnitine treatment on ADP-induced mitochondrial respiration was observed without exogenous respiratory substrate. Increase in mitochondrial respiration was induced by treatment with l-carnitine in a concentration-dependent manner. Treatment with rotenone, a complex I blocker, completely inhibited ADP-induced oxygen consumption even in the presence of l-carnitine. Moreover, the l-carnitine dependent ADP-induced mitochondrial oxygen consumption did not increase when PLA2 inhibitors were treated before ADP treatment. The l-carnitine-dependent ADP-induced oxygen consumption did contribute to ATP productions but not heat generation via an uncoupling system. These results suggest that l-carnitine might be essential to the β-oxidation of quarried fatty acids from the mitochondrial membrane by PLA2.  相似文献   
78.
Oxidative stress has been suggested to be involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer disease (AD) and Parkinson disease (PD). Heme oxygenase-1 (HO-1), a key enzyme in heme catabolism, also functions as an antioxidant enzyme. Here, we show that a (GT)n repeat in the human HO-1 gene promoter region is highly polymorphic, although no particular alleles are associated with AD or PD. This newly identified genetic marker should allow us to study the possible involvement of HO-1 in certain human diseases. Received: 5 November 1996 / Accepted: 18 February 1997  相似文献   
79.
It has been of much interest whether there is functional redundancy between the constitutively signaling pre-Talpha/TCRbeta (pre-TCR) and ligated TCRalphabeta complexes, which independently operate the two distinct checkpoints during thymocyte development, i.e., the pre-TCR involved in beta-selection at the CD4(-)CD8(-) double-negative stage and the TCRalphabeta being crucial for positive/negative selection at the CD4(+)CD8(+) double-positive stage. We found that the pre-TCR expressed on double-positive cells in TCRalpha-deficient (TCRalpha(-/-)) mice produced a small number of mature CD8(+) T cells. Surprisingly, when pre-Talpha was overexpressed, resulting in augmentation of pre-TCR expression, there was a striking increase of the CD8(+) T cells. In addition, even in the absence of up-regulation of pre-TCR expression, a similar increase of CD8(+) T cells was also observed in TCRalpha(-/-) mice overexpressing Egr-1, which lowers the threshold of signal strength required for positive selection. In sharp contrast, the CD8(+) T cells drastically decreased in the absence of pre-Talpha on a TCRalpha(-/-) background. Thus, the pre-TCR appears to functionally promote positive selection of CD8(+) T cells. The biased production of CD8(+) T cells via the pre-TCR might also support the potential involvement of signal strength in CD4/CD8 lineage commitment.  相似文献   
80.
Janus kinase 2 (Jak2) protein tyrosine kinase plays an important role in interleukin-3– or granulocyte–macrophage colony-stimulating factor–mediated signal transduction pathways leading to cell proliferation, activation of early response genes, and inhibition of apoptosis. However, it is unclear whether Jak2 can activate these signaling pathways directly without the involvement of cytokine receptor phosphorylation. To investigate the specific role of Jak2 in the regulation of signal transduction pathways, we generated gyrase B (GyrB)–Jak2 fusion proteins, dimerized through the addition of coumermycin. Coumermycin induced autophosphorylation of GyrB–Jak2 fusion proteins, thus bypassing receptor activation. Using different types of chimeric Jak2 molecules, we observed that although the kinase domain of Jak2 is sufficient for autophosphorylation, the N-terminal regions are essential for the phosphorylation of Stat5 and for the induction of short-term cell proliferation. Moreover, coumermycin-induced activation of Jak2 can also lead to increased levels of c-myc and CIS mRNAs in BA/F3 cells stably expressing the Jak2 fusion protein with the intact N-terminal region. Conversely, activation of the chimeric Jak2 induced neither phosphorylation of Shc or SHP-2 nor activation of the c-fos promoter. Here, we showed that the GyrB–Jak2 system can serve as an excellent model to dissect signals of receptor-dependent and -independent events. We also obtained evidence indicating a role for the N-terminal region of Jak2 in downstream signaling events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号