首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1064篇
  免费   68篇
  1132篇
  2023年   2篇
  2022年   8篇
  2021年   21篇
  2020年   10篇
  2019年   19篇
  2018年   25篇
  2017年   23篇
  2016年   30篇
  2015年   44篇
  2014年   48篇
  2013年   64篇
  2012年   89篇
  2011年   87篇
  2010年   50篇
  2009年   35篇
  2008年   75篇
  2007年   60篇
  2006年   67篇
  2005年   69篇
  2004年   68篇
  2003年   43篇
  2002年   44篇
  2001年   19篇
  2000年   15篇
  1999年   10篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   9篇
  1993年   3篇
  1992年   9篇
  1991年   6篇
  1990年   13篇
  1989年   12篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1981年   2篇
  1978年   4篇
  1974年   2篇
  1973年   1篇
  1965年   1篇
排序方式: 共有1132条查询结果,搜索用时 15 毫秒
21.
22.
Photosystem II (PSII) functions mainly as a dimer to catalyze the light energy conversion and water oxidation reactions. However, monomeric PSII also exists and functions in vivo in some cases. The crystal structure of monomeric PSII has been solved at 3.6 Å resolution, but it is still not clear which factors contribute to the formation of the dimer. Here, we solved the structure of PSII monomer at a resolution of 2.78 Å using cryo-electron microscopy (cryo-EM). From our cryo-EM density map, we observed apparent differences in pigments and lipids in the monomer-monomer interface between the PSII monomer and dimer. One β-carotene and two sulfoquinovosyl diacylglycerol (SQDG) molecules are found in the monomer-monomer interface of the dimer structure but not in the present monomer structure, although some SQDG and other lipid molecules are found in the analogous region of the low-resolution crystal structure of the monomer, or cryo-EM structure of an apo-PSII monomer lacking the extrinsic proteins from Synechocystis sp. PCC 6803. In the current monomer structure, a large part of the PsbO subunit was also found to be disordered. These results indicate the importance of the β-carotene, SQDG and PsbO in formation of the PSII dimer.  相似文献   
23.
24.
Toxoplasma gondii establishes a chronic infection by forming cysts preferentially in the brain. This chronic infection is one of the most common parasitic infections in humans and can be reactivated to develop life-threatening toxoplasmic encephalitis in immunocompromised patients. Host-pathogen interactions during the chronic infection include growth of the cysts and their removal by both natural rupture and elimination by the immune system. Analyzing these interactions is important for understanding the pathogenesis of this common infection. We developed a differential equation framework of cyst growth and employed Akaike Information Criteria (AIC) to determine the growth and removal functions that best describe the distribution of cyst sizes measured from the brains of chronically infected mice. The AIC strongly support models in which T. gondii cysts grow at a constant rate such that the per capita growth rate of the parasite is inversely proportional to the number of parasites within a cyst, suggesting finely-regulated asynchronous replication of the parasites. Our analyses were also able to reject the models where cyst removal rate increases linearly or quadratically in association with increase in cyst size. The modeling and analysis framework may provide a useful tool for understanding the pathogenesis of infections with other cyst producing parasites.  相似文献   
25.
Allogrooming, where an individual grooms another, has been extensively studied in various social animals to understand its role in the evolution of cooperation/prosociality. In existing studies in mammals, allogrooming has been suggested to exhibit not only a hygiene but also a social function. Allopreening, a topic of increasing interest in mammals but recently also in birds, has been studied mostly with mature animals. However, in some species immature individuals also show allopreening and its function remains poorly understood. Crows, Corvus spp., are an ideal model to study this phenomenon, because juveniles form year-round aggregates during their long juvenile stage (e.g., throughout 3–4 years). Here, we investigated the function of allopreening in juvenile groups of wild-caught large-billed crows (C. macrorhynchos). Allopreening frequency and duration for three groups of wild-caught juveniles were analysed to determine whether there was a symmetrical (i.e., reciprocal) or asymmetrical allopreening pattern, and if sex composition of the dyad and/or relative dominance of donor and recipient had an effect. We found that both the frequency and duration of male allopreening correlated with frequency of aggression. Allopreening between both males and females occurred unidirectionally from dominants to subordinates but not in the opposite direction. On the contrary, allopreening between a male and a female was found to be reciprocated, though the absolute frequency and duration were both greater in males than in females. These results suggest that the social function of allopreening in juvenile crows differs depending on the sex composition of the dyad, functioning as a dominance signal for same-sex dyads, and serving a social bonding function for opposite-sex dyads. These findings may reflect the potentially crucial roles of allopreening in within-sex competition and opposite-sex attraction during the 3 year-long juvenile stage affecting future mate choice in lifelong monogamy.  相似文献   
26.
27.
28.
IL-25, IL-33 and TSLP, which are produced predominantly by epithelial cells, can induce production of Th2-type cytokines such as IL-4, IL-5 and/or IL-13 by various types of cells, suggesting their involvement in induction of Th2-type cytokine-associated immune responses. It is known that Th2-type cytokines contribute to host defense against malaria parasite infection in mice. However, the roles of IL-25, IL-33 and TSLP in malaria parasite infection remain unclear. Thus, to elucidate this, we infected wild-type, IL-25?/?, IL-33?/? and TSLP receptor (TSLPR)?/? mice with Plasmodium berghei (P. berghei) ANKA, a murine malaria strain. The expression levels of IL-25, IL-33 and TSLP mRNA were changed in the brain, liver, lung and spleen of wild-type mice after infection, suggesting that these cytokines are involved in host defense against P. berghei ANKA. However, the incidence of parasitemia and survival in the mutant mice were comparable to in the wild-type mice. These findings indicate that IL-25, IL-33 and TSLP are not critical for host defense against P. berghei ANKA.  相似文献   
29.
Many plants have mutualistic relationships with ants, whereby plants provide food and/or nesting sites for the symbiotic ants, and in turn the ants protect the host plants by excluding herbivores. While the ants are useful as guards, they may negatively affect host reproduction by excluding pollinators. Here we studied this potential conflict in the myrmecophytic Macaranga winkleri pollinated by the thrips Dolichothrips fialae. Behavioural responses of ant guards to pollinator thrips and their chemicals, and related chemical analyses, provide evidence that thrips deter ant-guards by secreting droplets containing ant-repelling n-decanoic acid from their anuses. This is the first report of insect pollinators repelling their host’s symbiotic guard ants to perform pollination. This is a novel strategy by which a plant host avoids interference with pollination by ant-guards in an ant–plant mutualism. The acquisition of a pollination system that is resistant to ant attacks may have facilitated the evolution of myrmecophytes in the genus Macaranga.  相似文献   
30.
Cohesin is a ring‐shaped protein complex that plays a crucial role in sister chromatid cohesion and gene expression. The dynamic association of cohesin with chromatin is essential for these functions. However, the exact nature of cohesin dynamics, particularly cohesin translocation, remains unclear. We evaluated the dynamics of individual cohesin molecules on DNA and found that the cohesin core complex possesses an intrinsic ability to traverse DNA in an adenosine triphosphatase (ATPase)‐dependent manner. Translocation ability is suppressed in the presence of Wapl‐Pds5 and Sororin; this suppression is alleviated by the acetylation of cohesin and the action of mitotic kinases. In Xenopus laevis egg extracts, cohesin is translocated on unreplicated DNA in an ATPase‐ and Smc3 acetylation‐dependent manner. Cohesin movement changes from bidirectional to unidirectional when cohesin faces DNA replication; otherwise, it is incorporated into replicating DNA without being translocated or is dissociated from replicating DNA. This study provides insight into the nature of individual cohesin dynamics and the mechanisms by which cohesin achieves cohesion in different chromatin contexts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号