首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   18篇
  2022年   2篇
  2021年   12篇
  2020年   1篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   8篇
  2014年   21篇
  2013年   10篇
  2012年   18篇
  2011年   20篇
  2010年   15篇
  2009年   16篇
  2008年   26篇
  2007年   30篇
  2006年   14篇
  2005年   12篇
  2004年   16篇
  2003年   10篇
  2002年   12篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
61.
Summary Cytotoxic T-lymphocytes (CTLs) kill abnormal cells. CTLs recognize major histocompatibility complex class I molecules in complex with peptides derived from relevant antigens. The identification of tumor associated antigen peptides enabled the design of anti-tumor and anti-metastatic vaccines in a murine lung carcinoma.  相似文献   
62.
Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein‐protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid‐liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA‐RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.  相似文献   
63.
Guidance of primordial germ cell migration   总被引:4,自引:0,他引:4  
Primordial germ cells (PGCs), the progenitors of the gametes, migrate from the position where they are specified towards the region where the gonad develops. To reach their target, the PGCs obtain directional cues from cells positioned along their migration path. One such cue, the chemokine SDF-1, has recently been found to be critical for proper PGC migration in zebrafish and in mice. In Drosophila, too, a molecule that is structurally related to chemokine receptors and is important for PGC migration has been identified. The ability to visualize chemokine-guided migration at a high resolution in vivo in these model organisms provides a unique opportunity to study this process, which is relevant for many events in normal development and disease.  相似文献   
64.
65.
Here we use time-lapse microscopy to analyse cell-matrix adhesions in cells expressing one of two different cytoskeletal proteins, paxillin or tensin, tagged with green fluorescent protein (GFP). Use of GFP-paxillin to analyse focal contacts and GFP-tensin to study fibrillar adhesions reveals that both types of major adhesion are highly dynamic. Small focal contacts often translocate, by extending centripetally and contracting peripherally, at a mean rate of 19 micrometers per hour. Fibrillar adhesions arise from the medial ends of stationary focal contacts, contain alpha5beta1 integrin and tensin but not other focal-contact components, and associate with fibronectin fibrils. Fibrillar adhesions translocate centripetally at a mean rate of 18 micrometers per hour in an actomyosin-dependent manner. We propose a dynamic model for the regulation of cell-matrix adhesions and for transitions between focal contacts and fibrillar adhesions, with the ability of the matrix to deform functioning as a mechanical switch.  相似文献   
66.
Identification of RNA editing sites in the SNP database   总被引:3,自引:0,他引:3  
The relationship between human inherited genomic variations and phenotypic differences has been the focus of much research effort in recent years. These studies benefit from millions of single-nucleotide polymorphism (SNP) records available in public databases, such as dbSNP. The importance of identifying false dbSNP records increases with the growing role played by SNPs in linkage analysis for disease traits. In particular, the emerging understanding of the abundance of DNA and RNA editing calls for a careful distinction between inherited SNPs and somatic DNA and RNA modifications. In order to demonstrate that some of the SNP database records are actually somatic modification, we focus on one type of these modifications, namely A-to-I RNA editing, and present evidence for hundreds of dbSNP records that are actually editing sites. We provide a list of 102 RNA editing sites previously annotated in dbSNP database as SNPs, and experimentally validate seven of these. Interestingly, we show how dbSNP can serve as a starting point to look for new editing sites. Our results, for this particular type of RNA editing, demonstrate the need for a careful analysis of SNP databases in light of the increasing recognition of the significance of somatic sequence modifications.  相似文献   
67.
68.
Gene-regulation networks contain recurring elementary circuits termed network motifs. It is of interest to understand under which environmental conditions each motif might be selected. To address this, we study one of the most significant network motifs, a three-gene circuit called the coherent feed-forward loop (FFL). The FFL has been demonstrated theoretically and experimentally to perform a basic information-processing function: it shows a delay following ON steps of an input inducer, but not after OFF steps. Here, we ask under what environmental conditions might the FFL be selected over simpler gene circuits, based on this function. We employ a theoretical cost-benefit analysis for the selection of gene circuits in a given environment. We find conditions that the environment must satisfy in order for the FFL to be selected over simpler circuits: the FFL is selected in environments where the distribution of the input pulse duration is sufficiently broad and contains both long and short pulses. Optimal values of the biochemical parameters of the FFL circuit are determined as a function of the environment such that the delay in the FFL blocks deleterious short pulses of induction. This approach can be generally used to study the evolutionary selection of other network motifs.  相似文献   
69.
Rabies virus (RABV) is a neurotropic virus that depends on long distance axonal transport in order to reach the central nervous system (CNS). The strategy RABV uses to hijack the cellular transport machinery is still not clear. It is thought that RABV interacts with membrane receptors in order to internalize and exploit the endosomal trafficking pathway, yet this has never been demonstrated directly. The p75 Nerve Growth Factor (NGF) receptor (p75NTR) binds RABV Glycoprotein (RABV-G) with high affinity. However, as p75NTR is not essential for RABV infection, the specific role of this interaction remains in question. Here we used live cell imaging to track RABV entry at nerve terminals and studied its retrograde transport along the axon with and without the p75NTR receptor. First, we found that NGF, an endogenous p75NTR ligand, and RABV, are localized in corresponding domains along nerve tips. RABV and NGF were internalized at similar time frames, suggesting comparable entry machineries. Next, we demonstrated that RABV could internalize together with p75NTR. Characterizing RABV retrograde movement along the axon, we showed the virus is transported in acidic compartments, mostly with p75NTR. Interestingly, RABV is transported faster than NGF, suggesting that RABV not only hijacks the transport machinery but can also manipulate it. Co-transport of RABV and NGF identified two modes of transport, slow and fast, that may represent a differential control of the trafficking machinery by RABV. Finally, we determined that p75NTR-dependent transport of RABV is faster and more directed than p75NTR-independent RABV transport. This fast route to the neuronal cell body is characterized by both an increase in instantaneous velocities and fewer, shorter stops en route. Hence, RABV may employ p75NTR-dependent transport as a fast mechanism to facilitate movement to the CNS.  相似文献   
70.
Neuropathic pain is a very common complication in diabetes mellitus (DM), and treatment for it is limited. As DM is becoming a global epidemic it is important to understand and treat this problem. The mechanisms of diabetic neuropathic pain are largely obscure. Recent studies have shown that glial cells are important for a variety of neuropathic pain types, and we investigated what are the changes that satellite glial cells (SGCs) in dorsal root ganglia undergo in a DM type 1 model, induced by streptozotocin (STZ) in mice and rats. We carried out immunohistochemical studies to learn about changes in the activation marker glial fibrillary acidic protein (GFAP) in SGCs. We found that after STZ‐treatment the number of neurons surrounded with GFAP‐positive SGCs in dorsal root ganglia increased 4‐fold in mice and 5‐fold in rats. Western blotting for GFAP, which was done only on rats because of the larger size of the ganglia, showed an increase of about 2‐fold in STZ‐treated rats, supporting the immunohistochemical results. These results indicate for the first time that SGCs are activated in rodent models of DM1. As SGC activation appears to contribute to chronic pain, these results suggest that SGCs may participate in the generation and maintenance of diabetic neuropathic pain, and can serve as a potential therapeutic target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号