首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   18篇
  2022年   2篇
  2021年   12篇
  2020年   1篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   8篇
  2014年   21篇
  2013年   10篇
  2012年   18篇
  2011年   20篇
  2010年   15篇
  2009年   16篇
  2008年   26篇
  2007年   30篇
  2006年   14篇
  2005年   12篇
  2004年   16篇
  2003年   10篇
  2002年   12篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有278条查询结果,搜索用时 234 毫秒
161.
Five-day-old etiolated cucumber ( Cucumis sativus L.) seedlings cv. Marketmore held at 2°C for 72 h developed chilling injury, resulting in desiccation and collapse of the hypocotyl tissue and eventual plant death. Hypoxia-induced accumulation of ethanol and acetaldehyde led to tolerance of subsequent chilling, as evidenced by continued hypocotyl growth and freedom from injury. Attenuated accumulation of volatiles by applied bisulfite reduced the development of hypoxia-induced chilling tolerance in seedlings. In seedlings held in normoxia cold tolerance was induced by applied ethanol vapors, whereas acetaldehyde had a marginal effect, suggesting that hypoxia-induced cold tolerance may arise from the accumulation and activity of ethanol. Cold tolerance was also induced by exposure of seedlings to volatile anesthetics including n -propanol, n -butanol, chloroform and halothane, suggesting that ethanol activity may result from fluidization of membrane lipids. This view is consistent with results which showed that ethanol activity was not associated with lipid metabolism. However, development of cold tolerance in ethanol-enriched tissues was time dependent, indicating that ethanol activity probably also entails biosynthetic event(s).  相似文献   
162.
163.
Argininosuccinate lyase (ASL) is required for the synthesis and channeling of L-arginine to nitric oxide synthase (NOS) for nitric oxide (NO) production. Congenital ASL deficiency causes argininosuccinic aciduria (ASA), the second most common urea-cycle disorder, and leads to deficiency of both ureagenesis and NO production. Subjects with ASA have been reported to develop long-term complications such as hypertension and neurocognitive deficits despite early initiation of therapy and the absence of documented hyperammonemia. In order to distinguish the relative contributions of the hepatic urea-cycle defect from those of the NO deficiency to the phenotype, we performed liver-directed gene therapy in a mouse model of ASA. Whereas the gene therapy corrected the ureagenesis defect, the systemic hypertension in mice could be corrected by treatment with an exogenous NO source. In an ASA subject with severe hypertension refractory to antihypertensive medications, monotherapy with NO supplements resulted in the long-term control of hypertension and a decrease in cardiac hypertrophy. In addition, the NO therapy was associated with an improvement in some neuropsychological parameters pertaining to verbal memory and nonverbal problem solving. Our data show that ASA, in addition to being a classical urea-cycle disorder, is also a model of congenital human NO deficiency and that ASA subjects could potentially benefit from NO supplementation. Hence, NO supplementation should be investigated for the long-term treatment of this condition.  相似文献   
164.
Species utilizing a wide range of resources are intuitively expected to be less efficient in exploiting each resource type compared to species which have developed an optimal phenotype for utilizing only one or a few resources. We report here the results of an empirical study whose aim was to test for a negative association between habitat niche breadth and foraging performance. As a model system to address this question, we used two highly abundant species of pit-building antlions varying in their habitat niche breadth: the habitat generalist Myrmeleon hyalinus, which inhabits a variety of soil types but occurs mainly in sandy soils, and the habitat specialist Cueta lineosa, which is restricted to light soils such as loess. Both species were able to discriminate between the two soils, with each showing a distinct and higher preference to the soil type providing higher prey capture success and characterizing its primary habitat-of-origin. As expected, only small differences in the foraging performances of the habitat generalist were evident between the two soils, while the performance of the habitat specialist was markedly reduced in the alternative sandy soil. Remarkably, in both soil types, the habitat generalist constructed pits and responded to prey faster than the habitat specialist, at least under the temperature range of this study. Furthermore, prey capture success of the habitat generalist was higher than that of the habitat specialist irrespective of the soil type or prey ant species encountered, implying a positive association between habitat niche-breadth and foraging performance. Alternatively, C. lineosa specialization to light soils does not necessarily confer upon its superiority in utilizing such habitats. We thus suggest that habitat specialization in C. lineosa is either an evolutionary dead-end, or, more likely, that this species' superiority in light soils can only be evident when considering additional niche axes.  相似文献   
165.
We present a biologically oriented model that accounts for left-right discrimination in the cockroach's escape behavior. The model includes the main groups of neurons found to be involved in the escape response. Each one of the included neurons is described by the actual processes taking place in an individual neuron (formation of an action potential, transmitter release, conductance changes, etc.). Furthermore, realistic chemical synapses (excitatory or inhibitory and able to undergo different types of modulation) connect the various neurons. With this model, we were able to achieve, for a wide range of inputs representing different wind directions, behavior which resembles that found experimentally. The model indicates that several synaptic properties, in particular postsynaptic inhibition and presynaptic facilitation, play a key role in the discrimination of wind direction. Received: 22 January 1999 / Accepted in revised form: 1 March 1999  相似文献   
166.
The COP9 Signalosome protein complex (CSN) is a pleiotropic regulator of plant development and contains eight-subunits. Six of these subunits contain the PCI motif which mediates specific protein interactions necessary for the integrity of the complex. COP9 complex subunit 7 (CSN7) contains an N-terminal PCI motif followed by a C-terminal extension which is also necessary for CSN function. A yeast-interaction trap assay identified the small subunit of ribonucelotide reductase (RNR2) from Arabidopsis as interacting with the C-terminal section of CSN7. This interaction was confirmed in planta by both bimolecular fluorescence complementation and immuoprecipitation assays with endogenous proteins. The subcellular localization of RNR2 was primarily nuclear in meristematic regions, and cytoplasmic in adult cells. RNR2 was constitutively nuclear in csn7 mutant seedlings, and was also primarily nuclear in wild type seedlings following exposure to UV-C. These two results correlate with constitutive expression of several DNA-damage response genes in csn7 mutants, and to increased tolerance of csn7 seedlings to UV-C treatment. We propose that the CSN is a negative regulator of RNR activity in Arabidopsis.  相似文献   
167.
Kardash E  Bandemer J  Raz E 《Nature protocols》2011,6(12):1835-1846
Fluorescence resonance energy transfer (FRET)-based molecular biosensors serve as important tools for studying protein activity in live cells and have been widely used for this purpose over the past decade. However, FRET biosensors are rarely used in the context of the live organism because of the inherent high cellular complexity and imaging challenges associated with the three-dimensional environment. Here we provide a protocol for using single-chain intramolecular FRET-based biosensors in early development. We provide a general protocol for FRET ratio imaging in embryos, including the data-acquisition conditions and the algorithm for ratio image generation. We then use the pRaichu RacFRET biosensor to exemplify the adaptation and optimization of a particular biosensor for use in live zebrafish embryos. Once an optimized biosensor is available, the complete procedure, including introduction of the probes into embryos, imaging and data analysis, requires 2-3 d.  相似文献   
168.
Parkinson's disease is a neurodegenerative disorder manifesting in debilitating motor symptoms. This disorder is characterized by abnormal activity throughout the cortico-basal ganglia loop at both the single neuron and network levels. Previous neurophysiological studies have suggested that the encoding of movement in the parkinsonian state involves correlated activity and synchronized firing patterns. In this study, we used multi-electrode recordings to directly explore the activity of neurons from the globus pallidus of parkinsonian primates during passive limb movements and to determine the extent to which they interact and synchronize. The vast majority (80/103) of the recorded pallidal neurons responded to periodic flexion-extension movements of the elbow. The response pattern was sinusoidal-like and the timing of the peak response of the neurons was uniformly distributed around the movement cycle. The interaction between the neuronal activities was analyzed for 123 simultaneously recorded pairs of neurons. Movement-based signal correlation values were diverse and their mean was not significantly different from zero, demonstrating that the neurons were not activated synchronously in response to movement. Additionally, the difference in the peak responses phase of pairs of neurons was uniformly distributed, showing their independent firing relative to the movement cycle. Our results indicate that despite the widely distributed activity in the globus pallidus of the parkinsonian primate, movement encoding is dispersed and independent rather than correlated and synchronized, thus contradicting current views that posit synchronous activation during Parkinson's disease.  相似文献   
169.
Mutations in genes that play fundamental roles in metabolic pathways have been found to also play a role in tumor development and susceptibility to cancer. At the same time, significant progress has been made in the treatment of patients with inborn errors of metabolism (IEM),(1) resulting in increased longevity and the unmasking of cancer predisposition, frequently hepatocellular carcinoma, in these conditions. These patients offer a potential opportunity to deepen our understanding of how intermediary metabolism impacts tumorigenesis. We provide an overview from the perspective of cancers in patients affected with IEM and discuss how dysregulation of these specific metabolic pathways might contribute to the mechanisms of cancer development and treatment.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号