首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   552篇
  免费   89篇
  2022年   3篇
  2021年   7篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   9篇
  2015年   16篇
  2014年   13篇
  2013年   16篇
  2012年   37篇
  2011年   32篇
  2010年   29篇
  2009年   19篇
  2008年   25篇
  2007年   35篇
  2006年   27篇
  2005年   23篇
  2004年   17篇
  2003年   27篇
  2002年   20篇
  2001年   16篇
  2000年   13篇
  1999年   14篇
  1998年   4篇
  1996年   4篇
  1995年   7篇
  1994年   10篇
  1993年   10篇
  1992年   20篇
  1991年   13篇
  1990年   16篇
  1989年   10篇
  1988年   11篇
  1987年   11篇
  1986年   8篇
  1985年   6篇
  1984年   6篇
  1983年   8篇
  1982年   5篇
  1981年   5篇
  1979年   4篇
  1978年   6篇
  1976年   3篇
  1974年   9篇
  1973年   13篇
  1972年   6篇
  1971年   4篇
  1968年   5篇
  1956年   2篇
  1913年   2篇
排序方式: 共有641条查询结果,搜索用时 15 毫秒
91.
92.
Posttranslational matrix protein import into peroxisomes uses either one of the two peroxisomal targeting signals (PTS), PTS1 and PTS2. Unlike the PTS1 receptor Pex5p, the PTS2 receptor Pex7p is necessary but not sufficient to target cargo proteins into the peroxisomal matrix and requires coreceptors. Saccharomyces cerevisiae possesses two coreceptors, Pex18p and Pex21p, with a redundant but not a clearly defined function. To gain further insight into the early events of this import pathway, PTS2 pre-import complexes of S. cerevisiae were isolated and characterized by determination of size and protein composition in wild-type and different mutant strains. Mass spectrometric analysis of the cytosolic PTS2 pre-import complex indicates that Fox3p is the only abundant PTS2 protein under oleate growth conditions. Our data strongly suggest that the formation of the ternary cytosolic PTS2 pre-import complex occurs hierarchically. First, Pex7p recognizes cargo proteins through its PTS2 in the cytosol. In a second step, the coreceptor binds to this complex, and finally, this ternary 150 kDa pre-import complex docks at the peroxisomal membrane, where both the PTS1 and the PTS2 import pathways converge. Gel filtration analysis of membrane-bound subcomplexes suggests that Pex13p provides the initial binding partner at the peroxisomal membrane, whereas Pex14p assembles with Pex18p in high-molecular-weight complexes after or during dissociation of the PTS2 receptor.  相似文献   
93.
Connective tissue growth factor (CTGF) is a secreted protein that is strongly induced in human and experimental heart failure. CTGF is said to be profibrotic; however, the precise function of CTGF is unclear. We generated transgenic mice and rats with cardiomyocyte-specific CTGF overexpression (CTGF-TG). To investigate CTGF as a fibrosis inducer, we performed morphological and gene expression analyses of CTGF-TG mice and rat hearts under basal conditions and after stimulation with angiotensin II (Ang II) or isoproterenol, respectively. Surprisingly, cardiac tissues of both models did not show increased fibrosis or enhanced gene expression of fibrotic markers. In contrast to controls, Ang II treated CTGF-TG mice displayed preserved cardiac function. However, CTGF-TG mice developed age-dependent cardiac dysfunction at the age of 7 months. CTGF related heart failure was associated with Akt and JNK activation, but not with the induction of natriuretic peptides. Furthermore, cardiomyocytes from CTGF-TG mice showed unaffected cellular contractility and an increased Ca2+ reuptake from sarcoplasmatic reticulum. In an ischemia/reperfusion model CTGF-TG hearts did not differ from controls.Our data suggest that CTGF itself does not induce cardiac fibrosis. Moreover, it is involved in hypertrophy induction and cellular remodeling depending on the cardiac stress stimulus. Our new transgenic animals are valuable models for reconsideration of CTGF''s profibrotic function in the heart.  相似文献   
94.
A proteomic approach was used to investigate the dynamic cellular host cell response induced by influenza virus infection in two different vaccine production cell lines, MDCK and Vero. For identification of proteins possibly involved in global host cell response mechanisms and virus–host cell interactions in these producer cell lines, quantitative 2-D DIGE and nanoHPLC-nanoESI-MS/MS analysis were performed. In particular, host cell proteome alterations caused by infection with influenza virus variants showing differences in replication characteristics in MDCK cells were compared. Moreover, the host cell response to virus infection in Vero cells with respect to their deficiency in interferon (IFN) production and the need for virus adaptation to optimize productivity of this cell line were analyzed. Several proteins with differential abundance profiles were identified and Western blot analysis was performed for further confirmation of selected proteins. IFN-induced signal transduction, cytoskeleton remodeling, vesicle transport and proteolysis were the principal pathways that changed in infected MDCK cells. In Vero cells alterations of cell interactions, heat shock and oxidative stress response were detected. The findings will improve understanding of host cell response mechanisms during influenza vaccine production and viral strategies to evade these responses and to replicate efficiently in different cell lines.  相似文献   
95.
This study led to the extension and refinement of our current model for the global response of Pseudomonas putida KT2440 to phenol by getting insights into the adaptive response mechanisms involving the membrane proteome. A two-dimensional gel electrophoresis based protocol was optimized to allow the quantitative comparison of membrane proteins, by combining inner and outer membrane fractionation with membrane protein solubilization using the detergent dodecylmaltoside. Following phenol exposure, a coordinate increased content of protein subunits of known or putative solvent efflux pump systems (e.g. TtgA, TtgC, Ttg2A, Ttg2C, and PP_1516-7) and a decreased content of porins OprB, OprF, OprG and OprQ was registered, consistent with an adaptive response to reduce phenol intracellular concentration. This adaptive response may in part be mediated by post-translational modifications, as suggested by the relative content of the multiple forms identified for a few porins and efflux pump subunits. Results also suggest the important role of protein chaperones, of cell envelope and cell surface and of a more active respiratory chain in the response to phenol. All these mechanistic insights may be extended to Pseudomonas adaptation to solvents, of possible impact in biodegradation, bioremediation and biocatalysis.  相似文献   
96.
T-cell immunity is likely to play a role in protection against SARS-CoV-2 by helping generate neutralizing antibodies. We longitudinally studied CD4 T-cell responses to the M, N, and S structural proteins of SARS-CoV-2 in 26 convalescent individuals. Within the first two months following symptom onset, a majority of individuals (81%) mounted at least one CD4 T-cell response, and 48% of individuals mounted detectable SARS-CoV-2-specific circulating T follicular helper cells (cTfh, defined as CXCR5+PD1+ CD4 T cells). SARS-CoV-2-specific cTfh responses across all three protein specificities correlated with antibody neutralization with the strongest correlation observed for S protein-specific responses. When examined over time, cTfh responses, particularly to the M protein, increased in convalescence, and robust cTfh responses with magnitudes greater than 5% were detected at the second convalescent visit, a median of 38 days post-symptom onset. CD4 T-cell responses declined but persisted at low magnitudes three months and six months after symptom onset. These data deepen our understanding of antigen-specific cTfh responses in SARS-CoV-2 infection, suggesting that in addition to S protein, M and N protein-specific cTfh may also assist in the development of neutralizing antibodies and that cTfh response formation may be delayed in SARS-CoV-2 infection.  相似文献   
97.
In vertebrate eyes, images are projected onto an inverted retina where light passes all retinal layers on its way to the photoreceptor cells. Light scattering within this tissue should impair vision. We show that radial glial (Müller) cells in the living retina minimize intraretinal light scatter and conserve the diameter of a beam that hits a single Müller cell endfoot. Thus, light arrives at individual photoreceptors with high intensity. This leads to an optimized signal/noise ratio, which increases visual sensitivity and contrast. Moreover, we show that the ratio between Müller cells and cones-responsible for acute vision-is roughly 1. This suggests that high spatiotemporal resolution may be achieved by each cone receiving its part of the image via its individual Müller cell-light guide.  相似文献   
98.
99.
100.
In eukaryotes, protein transport into the endoplasmic reticulum (ER) is facilitated by a protein-conducting channel, the Sec61 complex. The presence of large, water-filled pores with uncontrolled ion permeability, as formed by Sec61 complexes in the ER membrane, would seriously interfere with the regulated release of calcium from the ER lumen into the cytosol, an essential mechanism for intracellular signalling. We identified a calmodulin (CaM)-binding motif in the cytosolic N-terminus of mammalian Sec61α that bound CaM but not Ca2+-free apocalmodulin with nanomolar affinity and sequence specificity. In single-channel measurements, CaM potently mediated Sec61-channel closure in Ca2+-dependent manner. At the cellular level, two different CaM antagonists stimulated calcium release from the ER through Sec61 channels. However, protein transport into microsomes was not modulated by Ca2+-CaM. Molecular modelling of the ribosome/Sec61/CaM complexes supports the view that simultaneous ribosome and CaM binding to the Sec61 complex may be possible. Overall, CaM is involved in limiting Ca2+ leakage from the ER.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号