首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   666篇
  免费   77篇
  2024年   1篇
  2023年   6篇
  2022年   19篇
  2021年   33篇
  2020年   12篇
  2019年   14篇
  2018年   16篇
  2017年   10篇
  2016年   14篇
  2015年   35篇
  2014年   37篇
  2013年   48篇
  2012年   54篇
  2011年   58篇
  2010年   34篇
  2009年   30篇
  2008年   62篇
  2007年   45篇
  2006年   33篇
  2005年   36篇
  2004年   30篇
  2003年   24篇
  2002年   24篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   9篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   4篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有743条查询结果,搜索用时 15 毫秒
121.
Prenyl residues confer divergent biological activities such as antipathogenic and antiherbivorous activities on phenolic compounds, including flavonoids, coumarins, and xanthones. To date, about 1,000 prenylated phenolics have been isolated, with these compounds containing various prenyl residues. However, all currently described plant prenyltransferases (PTs) have been shown specific for dimethylallyl diphosphate as the prenyl donor, while most of the complementary DNAs encoding these genes have been isolated from the Leguminosae. In this study, we describe the identification of a novel PT gene from lemon (Citrus limon), ClPT1, belonging to the homogentisate PT family. This gene encodes a PT that differs from other known PTs, including flavonoid-specific PTs, in polypeptide sequence. This membrane-bound enzyme was specific for geranyl diphosphate as the prenyl donor and coumarin as the prenyl acceptor. Moreover, the gene product was targeted to plastid in plant cells. To our knowledge, this is the novel aromatic PT specific to geranyl diphosphate from citrus species.Prenylation is an important derivatization of plant aromatics, contributing to the chemical diversification of phenolic secondary metabolites in plants due to differences in prenylation positions, prenyl chain lengths, and further modifications of prenyl chains. To date, about 1,000 prenylated aromatic compounds have been isolated as biologically active substances from various plant species, including many medicinal plants.Coumarins (α-benzopyrones) are a large group of plant secondary metabolites. Many biologically active coumarins are prenylated, with the prenyl residue enhancing the biological activities of the aromatic core compound. For example, imperatorin (dimethylallylated xanthotoxol), a strong inhibitor of a Manduca sexta midgut cytochrome P450, has 100-fold greater activity than the nonprenylated coumarin compound, suggesting that prenylation is involved in chemoprevention against biotic stress in plants (Neal and Wu, 1994). Prenylated compounds are also beneficial for human health. For example, geranylation of umbelliferone at the OH position to form auraptene results in a 25-fold enhancement of the inhibition of Epstein Barr virus activity, a test used to screen antitumor compounds (Murakami et al., 1997). Moreover, in tuberculosis, 8-geranyloxypsoralen was reported to decrease the growth rate of Mycobacterium smegmatis (Adams et al., 2006).There are many reports on the detection of prenyltransferase (PT) activities for coumarins in various plant species. For example, umbelliferone-dimethylallyltransferase activities were reported in cultured parsley (Petroselinum crispum) cells, Ruta graveolens, and Ammi majus, and plastidial localization of the enzyme activity is also reported (Ellis and Brown, 1974; Dhillon and Brown, 1976; Tietjen and Matern, 1983; Hamerski and Matern, 1988; Hamerski et al., 1990). In addition, bergaptol 5-O-geranyltransferase activity, which yields bergamottin, a major coumarin derivative, was characterized using the microsomal fraction of lemon (Citrus limon) peel flavedo, the outer part of the lemon fruit (Frérot and Decorzant, 2004; Munakata et al., 2012). In the lemon flavedo, 8-geranyltransferase activity for umbelliferone was also detected (Munakata et al., 2012). To date, only one gene encoding these enzymes has been described; this gene, which encodes a parsley PT (PcPT), was very recently isolated (Karamat et al., 2014).The first flavonoid-specific PT identified was naringenin 8-dimethylallyltransferase (SfN8DT1) from a leguminous medicinal plant, Sophora flavescens (Sasaki et al., 2008). Since then, genes encoding various flavonoid PTs have been identified in Leguminosae (Akashi et al., 2009; Sasaki et al., 2011; Shen et al., 2012). Although other prenylated aromatic compounds, including coumarins, xanthons, phenylpropanoids, and phloroglucinols, have been isolated from many plant species, no gene encoding a PT for those aromatics has been isolated, except for the gene encoding a phloroglucinol-specific enzyme (HlPT1) from hops (Humulus lupulus) and a the recently isolated coumarin dimethylallyltransferase from parsley (Tsurumaru et al., 2010, 2012; Karamat et al., 2014). These isolated plant aromatic PTs show strong preference for dimethylallyl diphosphate (DMAPP) as the prenyl donor substrate, although in nature, many geranylated phenolics and less farnesylated phenolics have been described. This raises questions about the enzymes and reaction mechanisms involved in the synthesis of these phenolic compounds, such as substrate specificity and prenylation sites. Better understanding of these reactions requires the identification of PTs with other enzymatic activities. It is also necessary to identify PTs producing prenylated phenolics in nonleguminosaeous plants. Four different tracks should be explored to identify enzymes that (1) recognize nonflavonoid substrates, e.g. coumarins, phenylpropanoids, and xanthons, (2) are specific for longer chain prenyl diphosphates such as geranyl diphosphate (GPP) and farnesyl diphosphate (FPP), (3) are from nonlegume origins, and (4) catalyze O-prenylation.Citrus species, including lemons, contain large quantities of geranylated coumarins. We therefore isolated a complementary DNA (cDNA) encoding a PT from lemon peel, identifying the novel PT-encoding gene ClPT1. Phylogenetic analysis showed that this enzyme shares homologies with homogentisate PTs involved in vitamin E and plastoquinone biosynthesis but is located in a new clade. We provide evidence showing that this unique enzyme is highly specific for GPP as a prenyl donor and coumarin as a prenyl acceptor. We also show that the gene product is targeted to plastid in plant cells.  相似文献   
122.
123.
124.
Familial Mediterranean fever (FMF) is an autosomal recessive disorder characterized by recurrent attacks of febrile peritonitis, pleuritis and synovitis. Arthritis is a common and important feature of FMF. The clinical spectrum of arthritis in 71 FMF patients was retrospectively investigated. Mutations in the familial Mediterranean (MEFV) gene were screened. Unlike the previous reports on arthritis of FMF, most of the FMF patients (59%) in this study had symmetric two-joint arthritis whereas monoarticular, oligoarticular and polyarticular arthritis was presented in 20, 8 and 10% of the patients, respectively. Knees were affected in 45 (63%) patients, ankles in 30 (42%), elbows in 11 (15%), wrists in 12 (17%), hips in 12 (17%), small joints of the hands 7 (10%), small joints of the feet 2 (3%) and sacroiliac in 1 (1%). Destruction of the hip was observed in 2 (3%) patients and required hip replacement. Amyloidosis developed in 2 (3%) of our patients. Mutations in the MEFV gene were identified in 50 (71%) patients and the most dominant mutation detected was M694V (64%). Since FMF can be diagnosed by a simple DNA mutation analysis, all arthritis patients of certain origins (Arabs, Turks, Armenians and Jews) should be tested for FMF in order to prevent the complications (amyloidosis and protracted arthritis) by introducing colchicine which is the treatment of choice for FMF.  相似文献   
125.
Information on axonal damage is conveyed to neuronal cell bodies by a number of signaling modalities, including the post-translational modification of axoplasmic proteins. Retrograde transport of a subset of such proteins is thought to induce or enhance a regenerative response in the cell body. Here we report the use of a differential 2D-PAGE approach to identify injury-correlated retrogradely transported proteins in nerves of the mollusk Lymnaea. A comprehensive series of gels at different pI ranges allowed resolution of approximately 4000 spots by silver staining, and 172 of these were found to differ between lesioned versus control nerves. Mass spectrometric sequencing of 134 differential spots allowed their assignment to over 40 different proteins, some belonging to a vesicular ensemble blocked by the lesion and others comprising an up-regulated ensemble highly enriched in calpain cleavage products of an intermediate filament termed RGP51 (retrograde protein of 51 kDa). Inhibition of RGP51 expression by RNA interference inhibits regenerative outgrowth of adult Lymnaea neurons in culture. These results implicate regulated proteolysis in the formation of retrograde injury signaling complexes after nerve lesion and suggest that this signaling modality utilizes a wide range of protein components.  相似文献   
126.
Speciation is the evolutionary process in which new barriers to gene exchange are created. These barriers may be physical, leading to spatial separation of subpopulations and resulting in allopatric speciation, or they may be temporal, giving rise to allochronic speciation, and may include the time of day or the time of year when mating takes place. Drosophila melanogaster and D. pseudoobscura show different temporal patterns of circadian locomotor activity that are determined by the circadian clock gene period (per). Genes that control aspects of behavior that might be relevant to courtship and mating, such as locomotor patterns, become obvious candidates for involvement in the speciation process. However, evidence for the role of individual genes in the mechanism of mate choice has proved elusive. We have used transgenic flies carrying the natural per genes from these two Drosophila species to reveal that per has the potential to provide the permissive conditions for speciation, by affecting mate choice through a mechanism involving the species-specific timing of mating behavior.  相似文献   
127.
128.
Plant chemical defense and coevolved detoxification mechanisms in specialized herbivorous insects are fundamental in determining many insect–plant interactions. For example, Brassicale plants protect themselves from herbivory by producing glucosinolates, but these secondary metabolites are effectively detoxified by larvae of Pierid butterflies. Nevertheless, not all Brassicales are equally preferred by these specialist herbivores. Female Pieris butterflies avoid laying eggs on anthocyanin-rich red foliage, suggesting red color is a visual cue affecting oviposition behavior. In this study, we reared P. brassicae larvae on green and red cabbage leaves, to determine whether foliage color reliably indicates host plant quality. We did not find a difference in survival rates or maximal larval body mass in the two food treatments. However, larvae feeding on red cabbage leaves exhibited significantly lower growth rates and longer durations of larval development. Interestingly, this longer development was coupled with a higher consumption rate of dry food matter. The lower ratio of body mass gain to food consumption in larvae feeding on red cabbage leaves was coupled with significantly higher (ca. 10 %) larval metabolic rates. This suggests that development on red foliage may incur an increased metabolic load associated with detoxification of secondary plant metabolites. Energy and oxygen allocation to detoxification could come at the expense of growth and thus compromise larval fitness as a result of extended development. From an evolutionary perspective, red foliage color may serve as an honest defensive cue, as it reliably indicates the plant’s low quality as a substrate for larval development.  相似文献   
129.
A chemostat culture of the sulfate-reducing bacterium Desulfovibrio oxyclinae isolated from the oxic layer of a hypersaline cyanobacterial mat was grown anaerobically and then subjected to gassing with 1% oxygen, both at a dilution rate of 0.05 h−1. The sulfate reduction rate under anaerobic conditions was 370 nmol of SO42− mg of protein−1 min−1. At the onset of aerobic gassing, sulfate reduction decreased by 40%, although viable cell numbers did not decrease. After 42 h, the sulfate reduction rate returned to the level observed in the anaerobic culture. At this stage the growth yield increased by 180% compared to the anaerobic culture to 4.4 g of protein per mol of sulfate reduced. Protein content per cell increased at the same time by 40%. The oxygen consumption rate per milligram of protein measured in washed cell suspensions increased by 80%, and the thiosulfate reduction rate of the same samples increased by 29% with lactate as the electron donor. These findings indicated possible oxygen-dependent enhancement of growth. After 140 h of growth under oxygen flux, formation of cell aggregates 0.1 to 3 mm in diameter was observed. Micrometer-sized aggregates were found to form earlier, during the first hours of exposure to oxygen. The respiration rate of D. oxyclinae was sufficient to create anoxia inside clumps larger than 3 μm, while the levels of dissolved oxygen in the growth vessel were 0.7 ± 0.5 μM. Aggregation of sulfate-reducing bacteria was observed within a Microcoleus chthonoplastes-dominated layer of a cyanobacterial mat under daily exposure to oxygen concentrations of up to 900 μM. Desulfonema-like sulfate-reducing bacteria were also common in this environment along with other nonaggregated sulfate-reducing bacteria. Two-dimensional mapping of sulfate reduction showed heterogeneity of sulfate reduction activity in this oxic zone.  相似文献   
130.
Resonance is defined as maximal response of a system to periodic inputs in a limited frequency band. Resonance may serve to optimize inter-neuronal communication, and has been observed at multiple levels of neuronal organization. However, it is unknown how neuronal resonance observed at the network level is generated and how network resonance depends on the properties of the network building blocks. Here, we first develop a metric for quantifying spike timing resonance in the presence of background noise, extending the notion of spiking resonance for in vivo experiments. Using conductance-based models, we find that network resonance can be inherited from resonances at other levels of organization, or be intrinsically generated by combining mechanisms across distinct levels. Resonance of membrane potential fluctuations, postsynaptic potentials, and single neuron spiking can each be generated independently of resonance at any other level and be propagated to the network level. At all levels of organization, interactions between processes that give rise to low- and high-pass filters generate the observed resonance. Intrinsic network resonance can be generated by the combination of filters belonging to different levels of organization. Inhibition-induced network resonance can emerge by inheritance from resonance of membrane potential fluctuations, and be sharpened by presynaptic high-pass filtering. Our results demonstrate a multiplicity of qualitatively different mechanisms that can generate resonance in neuronal systems, and provide analysis tools and a conceptual framework for the mechanistic investigation of network resonance in terms of circuit components, across levels of neuronal organization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号