首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   830篇
  免费   100篇
  930篇
  2023年   4篇
  2022年   21篇
  2021年   22篇
  2020年   7篇
  2019年   14篇
  2018年   16篇
  2017年   12篇
  2016年   16篇
  2015年   50篇
  2014年   47篇
  2013年   50篇
  2012年   57篇
  2011年   65篇
  2010年   34篇
  2009年   34篇
  2008年   72篇
  2007年   42篇
  2006年   35篇
  2005年   41篇
  2004年   38篇
  2003年   27篇
  2002年   28篇
  2001年   15篇
  2000年   14篇
  1999年   6篇
  1998年   12篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   7篇
  1993年   8篇
  1992年   8篇
  1991年   13篇
  1990年   8篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   14篇
  1984年   3篇
  1982年   4篇
  1981年   7篇
  1979年   4篇
  1978年   3篇
  1976年   6篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1963年   2篇
  1950年   3篇
排序方式: 共有930条查询结果,搜索用时 0 毫秒
41.
Activated EGFR (epidermal growth factor receptor) undergoes ESCRT (endosomal sorting complex required for transport)-mediated sorting on to ILVs (intraluminal vesicles) of endosomes before degradation in the lysosome. Sorting of endocytosed EGFR on to ILVs removes the catalytic domain of the EGFR from the cytoplasm, resulting in termination of receptor signalling. EGFR signalling is also subject to down-regulation through receptor dephosphorylation by the ER (endoplasmic reticulum)-localized PTP1B (protein tyrosine phosphatase 1B). PTP1B on the cytoplasmic face of the ER interacts with endocytosed EGFR via direct membrane contacts sites between the ER and endosomes. In the present paper, we review the relationship between ER-endosome membrane contact sites and ILV formation, and their potential role in the regulation of EGFR sorting on to ILVs, through PTP1B-mediated dephosphorylation of both EGFR and components of the ESCRT machinery.  相似文献   
42.
43.
JS Eden  KL Lim  PA White 《Journal of virology》2012,86(18):10251-10252
Norovirus is an important human pathogen that is now recognized as the leading cause of acute gastroenteritis globally. Six viral genogroups have been described, although only genogroups GI, GII, and GIV are known to infect humans, with the GII viruses most commonly identified in both outbreak and sporadic settings. In contrast, infections by GIV viruses are rarely reported, and their overall prevalence in the community is unknown. Here, we report the complete genome sequence of the human GIV.1 strain Lake Macquarie virus, which caused two linked outbreaks of acute gastroenteritis in aged-care facilities in the Hunter region of New South Wales, Australia. The Lake Macquarie virus genome was 7,527 nucleotides (nt) in length and shared highest identity (70%) with the recently completed feline GIV.2 virus genome.  相似文献   
44.
45.
Chlorophyll is a central player in harvesting light energy for photosynthesis, yet the rate-limiting steps of chlorophyll catabolism and the regulation of the catabolic enzymes remain unresolved. To study the role and regulation of chlorophyllase (Chlase), the first enzyme of the chlorophyll catabolic pathway, we expressed precursor and mature versions of citrus (Citrus sinensis) Chlase in two heterologous plant systems: (1) squash (Cucurbita pepo) plants using a viral vector expression system; and (2) transiently transformed tobacco (Nicotiana tabacum) protoplasts. Expression of full-length citrus Chlase resulted in limited chlorophyll breakdown in protoplasts and no visible leaf phenotype in whole plants, whereas expression of a Chlase version lacking the N-terminal 21 amino acids (ChlaseDeltaN), which corresponds to the mature protein, led to extensive chlorophyll breakdown in both tobacco protoplasts and squash leaves. ChlaseDeltaN-expressing squash leaves displayed a dramatic chlorotic phenotype in plants grown under low-intensity light, whereas under natural light a lesion-mimic phenotype occurred, which was demonstrated to follow the accumulation of chlorophyllide, a photodynamic chlorophyll breakdown product. Full-length and mature citrus Chlase versions were localized to the chloroplast membrane fraction in expressing tobacco protoplasts, where processing of the N-terminal 21 amino acids appears to occur. Results obtained in both plant systems suggest that Chlase functions as a rate-limiting enzyme in chlorophyll catabolism controlled via posttranslational regulation.  相似文献   
46.
47.
The prevalence of common chronic non-communicable diseases (CNCDs) far overshadows the prevalence of both monogenic and infectious diseases combined. All CNCDs, also called complex genetic diseases, have a heritable genetic component that can be used for pre-symptomatic risk assessment. Common single nucleotide polymorphisms (SNPs) that tag risk haplotypes across the genome currently account for a non-trivial portion of the germ-line genetic risk and we will likely continue to identify the remaining missing heritability in the form of rare variants, copy number variants and epigenetic modifications. Here, we describe a novel measure for calculating the lifetime risk of a disease, called the genetic composite index (GCI), and demonstrate its predictive value as a clinical classifier. The GCI only considers summary statistics of the effects of genetic variation and hence does not require the results of large-scale studies simultaneously assessing multiple risk factors. Combining GCI scores with environmental risk information provides an additional tool for clinical decision-making. The GCI can be populated with heritable risk information of any type, and thus represents a framework for CNCD pre-symptomatic risk assessment that can be populated as additional risk information is identified through next-generation technologies.  相似文献   
48.
Detrimental effects of hyperaccumulation of the aromatic amino acid phenylalanine (Phe) in animals, known as phenylketonuria, are mitigated by excretion of Phe derivatives; however, how plants endure Phe accumulating conditions in the absence of an excretion system is currently unknown. To achieve Phe hyperaccumulation in a plant system, we simultaneously decreased in petunia flowers expression of all three Phe ammonia lyase (PAL) isoforms that catalyze the non‐oxidative deamination of Phe to trans‐cinnamic acid, the committed step for the major pathway of Phe metabolism. A total decrease in PAL activity by 81–94% led to an 18‐fold expansion of the internal Phe pool. Phe accumulation had multifaceted intercompartmental effects on aromatic amino acid metabolism. It resulted in a decrease in the overall flux through the shikimate pathway, and a redirection of carbon flux toward the shikimate‐derived aromatic amino acids tyrosine and tryptophan. Accumulation of Phe did not lead to an increase in flux toward phenylacetaldehyde, for which Phe is a direct precursor. Metabolic flux analysis revealed this to be due to the presence of a distinct metabolically inactive pool of Phe, likely localized in the vacuole. We have identified a vacuolar cationic amino acid transporter (PhCAT2) that contributes to sequestering excess of Phe in the vacuole. In vitro assays confirmed PhCAT2 can transport Phe, and decreased PhCAT2 expression in PAL‐RNAi transgenic plants resulted in 1.6‐fold increase in phenylacetaldehyde emission. These results demonstrate mechanisms by which plants maintain intercompartmental aromatic amino acid homeostasis, and provide critical insight for future phenylpropanoid metabolic engineering strategies.  相似文献   
49.
50.
Brain imaging studies have explored the neural mechanisms of recovery in adults following acquired disorders and, more recently, childhood developmental disorders. However, the neural systems underlying adult rehabilitation of neurobiologically based learning disabilities remain unexplored, despite their high incidence. Here we characterize the differences in brain activity during a phonological manipulation task before and after a behavioral intervention in adults with developmental dyslexia. Phonologically targeted training resulted in performance improvements in tutored compared to nontutored dyslexics, and these gains were associated with signal increases in bilateral parietal and right perisylvian cortices. Our findings demonstrate that behavioral changes in tutored dyslexic adults are associated with (1) increased activity in those left-hemisphere regions engaged by normal readers and (2) compensatory activity in the right perisylvian cortex. Hence, behavioral plasticity in adult developmental dyslexia involves two distinct neural mechanisms, each of which has previously been observed either for remediation of developmental or acquired reading disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号