全文获取类型
收费全文 | 216篇 |
免费 | 19篇 |
专业分类
235篇 |
出版年
2023年 | 1篇 |
2022年 | 4篇 |
2021年 | 4篇 |
2020年 | 1篇 |
2019年 | 3篇 |
2018年 | 10篇 |
2017年 | 7篇 |
2016年 | 10篇 |
2015年 | 14篇 |
2014年 | 20篇 |
2013年 | 16篇 |
2012年 | 24篇 |
2011年 | 18篇 |
2010年 | 13篇 |
2009年 | 8篇 |
2008年 | 8篇 |
2007年 | 10篇 |
2006年 | 7篇 |
2005年 | 6篇 |
2004年 | 9篇 |
2003年 | 8篇 |
2002年 | 7篇 |
2001年 | 3篇 |
2000年 | 4篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1996年 | 3篇 |
1994年 | 3篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1987年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1976年 | 1篇 |
排序方式: 共有235条查询结果,搜索用时 15 毫秒
191.
Lo Buono N Parrotta R Morone S Bovino P Nacci G Ortolan E Horenstein AL Inzhutova A Ferrero E Funaro A 《The Journal of biological chemistry》2011,286(21):18681-18691
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes. 相似文献
192.
193.
Basis of a humeomics science: chemical fractionation and molecular characterization of humic biosuprastructures 总被引:2,自引:0,他引:2
We propose a mild stepwise fractionation of molecular components of a humic acid (HA) suprastructure and their structural identification by advanced analytical methods. This procedure may be the basis of a "Humeomics" approach to characterize natural humic molecules and clarify their relations with ecosystems functions. Sequential fractionation included: (1) organic solvent extraction, (2) transesterification with boron trifluoride in methanol (BF(3)-CH(3)OH), (3) methanolic alkaline hydrolysis (KOH-CH(3)OH), and (4) cleavage of ether and glycosidic bonds with HI. Structural identification of initial and final material, separated organo-soluble and hydrosoluble fractions, and subfractions was conducted by GC-MS, HPSEC-ESI-MS (high-resolution, Orbitrap), and solid- and liquid-state NMR. GC-MS revealed in organosoluble unbound fractions the presence of both saturated and unsaturated, linear and branched, alkanoic, hydroxyalkanoic and alkandioic acids, n-alkanes, and n-alkanols. These components decreased progressively in fractions obtained after weak and strong ester cleavage. Unsubstituted alkanoic acids with variable chain length were ubiquitously detected in all fractions, thereby suggesting their fundamental function in the architecture of humic suprastructures. An important role in differentiating supramolecular associations should also be attributed to substituted alkanoic acids that were detected in variable amounts in different fractions. The content of aromatic acids and steroids was only noticed in the latter fractions. HPSEC-ESI-MS of initial and final solid fractions showed similar compounds, as indicated by GC-MS, whereas the hydrosoluble fraction after transesterification revealed fewer of these compounds but noticeable nitrogen-containing acids. A large amount of "cyclic" acids were identified by MS empirical formula in initial HA, and, to a lesser extent, in the final fractionation residue as well as in the hydrosoluble fraction. The predominant alkyl NMR signals in organosoluble extracts and those of CH-N, CH-O, and O-CH-O groups in hydrosoluble fraction confirmed mass spectrometry results. Homo- and heterocorrelated liquid-state NMR spectra indicated spin systems interactions varying with separated fractions. Solid-state and dipolar-dephasing NMR spectra of final residue showed predominance of sp(2) carbons, 66% of which were quaternary carbons, and a significant increase in conformational rigidity with respect to initial HA. Separated fractions accounted for 60% of initial HA weight, and losses were attributed to hydration water, liberated volatile compounds, and decarboxylation. Quantization of analytes showed that the sum of compound classes in separated fractions was greater than that for the initial HA, thereby showing that stepwise fractionation increased significantly the analytical identification of humic molecules. Our results suggest this "Humeomics" approach as a valid path for mapping humic molecular composition and assess humus origin and formation. 相似文献
194.
195.
Gallo G Lo Piccolo L Renzone G La Rosa R Scaloni A Quatrini P Puglia AM 《Applied microbiology and biotechnology》2012,94(5):1289-1301
The alkB gene, encoding an alkane monooxygenase in the actinomycete Gordonia sp. SoCg, was expressed in the non-alkane-degrading actinomycete Streptomyces coelicolor M145. The resulting engineered strain, M145-AH, can grow on n-hexadecane as sole carbon source. To unravel proteins associated with growth on n-alkanes, proteome of M145-AH after 6, 24, and 48 h of incubation in the Bushnell-Haas (BH) mineral medium containing n-hexadecane as sole carbon source (H condition) and in BH without any carbon source (0 condition) were compared using 2D-differential gel electrophoresis. Proteome analysis revealed significant changes only at 48 h, showing 48 differentially abundant proteins identified by mass spectrometry procedures. To asses if these proteins were specifically related to n-hexadecane metabolism, their expression was investigated, comparing H proteome with that of M145-AH incubated in BH with glucose as sole carbon source (G condition). Thus, protein expression profiles at 6, 24, and 48 h under H, 0, and G conditions were combined, revealing that M145-AH regulates in a temporally- and carbon source-dependent manner the expression of proteins involved in regulatory events, central carbon metabolism, respiration, β-oxidation, membrane transport, and amino acid and protein metabolism. Interestingly, 21 % of them, mostly involved in membrane transport and protein metabolism, showed a n-hexadecane-dependent regulation with regulatory proteins such as CRP likely to have a key role in M145-AH n-hexadecane growth. These results, expanding the knowledge on n-alkane utilization in Gram-positive bacteria, reveal genes to be targeted to develop an efficient S. coelicolor M145-AH-based bioremediation system. 相似文献
196.
Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development 总被引:1,自引:0,他引:1
Camerini S Senatore B Lonardo E Imperlini E Bianco C Moschetti G Rotino GL Campion B Defez R 《Archives of microbiology》2008,190(1):67-77
We introduced into Rhizobium leguminosarum bv. viciae LPR1105 a new pathway for the biosynthesis of the auxin, indole-3-acetic acid (IAA), under the control of a stationary phase-activated promoter active both in free-living bacteria and bacteroids. The newly introduced genes are the iaaM gene from Pseudomonas savastanoi and the tms2 gene from Agrobacterium tumefaciens. Free-living bacteria harbouring the promoter-iaaMtms2 construct release into the growth medium 14-fold more IAA than the wild-type parental strain. This IAA overproducing R. l. viciae, the RD20 strain, elicits the development of vetch root nodules containing up to 60-fold more IAA than nodules infected by the wild-type strain LPR1105. Vetch root nodules derived from RD20 are fewer in number per plant, heavier in terms of dry weight and show an enlarged and more active meristem. A significant increase in acetylene reduction activity was measured in nodules elicited in vetch by RD20. 相似文献
197.
Enza Lonardo Michele Cioffi Patricia Sancho Shanthini Crusz Christopher Heeschen 《Journal of visualized experiments : JoVE》2015,(100)
Pancreatic ductal adenocarcinoma (PDAC) contains a subset of exclusively tumorigenic cancer stem cells (CSCs) which have been shown to drive tumor initiation, metastasis and resistance to radio- and chemotherapy. Here we describe a specific methodology for culturing primary human pancreatic CSCs as tumor spheres in anchorage-independent conditions. Cells are grown in serum-free, non-adherent conditions in order to enrich for CSCs while their more differentiated progenies do not survive and proliferate during the initial phase following seeding of single cells. This assay can be used to estimate the percentage of CSCs present in a population of tumor cells. Both size (which can range from 35 to 250 micrometers) and number of tumor spheres formed represents CSC activity harbored in either bulk populations of cultured cancer cells or freshly harvested and digested tumors 1,2. Using this assay, we recently found that metformin selectively ablates pancreatic CSCs; a finding that was subsequently further corroborated by demonstrating diminished expression of pluripotency-associated genes/surface markers and reduced in vivo tumorigenicity of metformin-treated cells. As the final step for preclinical development we treated mice bearing established tumors with metformin and found significantly prolonged survival. Clinical studies testing the use of metformin in patients with PDAC are currently underway (e.g., , NCT01210911, and NCT01167738). Mechanistically, we found that metformin induces a fatal energy crisis in CSCs by enhancing reactive oxygen species (ROS) production and reducing mitochondrial transmembrane potential. In contrast, non-CSCs were not eliminated by metformin treatment, but rather underwent reversible cell cycle arrest. Therefore, our study serves as a successful example for the potential of in vitro sphere formation as a screening tool to identify compounds that potentially target CSCs, but this technique will require further in vitro and in vivo validation to eliminate false discoveries. NCT01488552相似文献
198.
Piccolo FM Pereira CF Cantone I Brown K Tsubouchi T Soza-Ried J Merkenschlager M Fisher AG 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1575):2260-2265
Reprogramming differentiated cells towards pluripotency can be achieved by different experimental strategies including the forced expression of specific 'inducers' and nuclear transfer. While these offer unparalleled opportunities to generate stem cells and advance disease modelling, the relatively low levels of successful reprogramming achieved (1-2%) makes a direct analysis of the molecular events associated with productive reprogramming very challenging. The generation of transient heterokaryons between human differentiated cells (such as lymphocytes or fibroblasts) and mouse pluripotent stem cell lines results in a much higher frequency of successful conversion (15% SSEA4 expressing cells) and provides an alternative approach to study early events during reprogramming. Under these conditions, differentiated nuclei undergo a series of remodelling events before initiating human pluripotent gene expression and silencing differentiation-associated genes. When combined with genetic or RNAi-based approaches and high-throughput screens, heterokaryon studies can provide important new insights into the factors and mechanisms required to reprogramme unipotent cells towards pluripotency. 相似文献
199.
Benvegnú Dalila Moter Roversi Katiane Barcelos Raquel Cristine Silva Trevizol Fabíola Pase Camila Simonetti Segat Hecson Jesser Dias Verônica Tironi Savian Ana Luiza Piccoli Bruna Lopes Piccolo Jaqueline Dutra-Filho Carlos Severo Emanuelli Tatiana de Bona da Silva Cristiane Beck Ruy Carlos Ruver Burger Marilise Escobar 《Neurochemical research》2018,43(2):477-487
Neurochemical Research - Haloperidol is a widely used antipsychotic, despite the severe motor side effects associated with its chronic use. This study was carried out to compare oral dyskinesia... 相似文献
200.
Salinee Jantrapirom Luca Lo Piccolo Hideki Yoshida Masamitsu Yamaguchi 《生物化学与生物物理学报:疾病的分子基础》2018,1864(9):3038-3049
The proteostasis machinery has critical functions in metabolically active cells such as neurons. Ubiquilins (UBQLNs) may decide the fate of proteins, with its ability to bind and deliver ubiquitinated misfolded or no longer functionally required proteins to the ubiquitin-proteasome system (UPS) and/or autophagy. Missense mutations in UBQLN2 have been linked to X-linked dominant amyotrophic lateral sclerosis with frontotemporal dementia (ALS-FTD). Although aggregation-prone TAR DNA-binding protein 43 (TDP-43) has been recognized as a major component of the ubiquitin pathology, the mechanisms by which UBQLN involves in TDP-43 proteinopathy have not yet been elucidated in detail. We previously characterized a new Drosophila Ubiquilin (dUbqn) knockdown model that produces learning/memory and locomotive deficits during the proteostasis impairment. In the present study, we demonstrated that the depletion of dUbqn markedly affected the expression and sub-cellular localization of Drosophila TDP-43 (TBPH), resulting in a cytoplasmic ubiquitin-positive (Ub+) TBPH pathology. Although we found that the knockdown of dUbqn widely altered and affected the turnover of a large number of proteins, we herein showed that an augmented soluble cytoplasmic Ub+-TBPH is as a crucial source of neurotoxicity following the depletion of dUbqn. We demonstrated that dUbqn knockdown-related neurotoxicity may be rescued by either restoring the proteostasis machinery or reducing the expression of TBPH. These novel results extend our knowledge on the UBQLN loss-of-function pathomechanism and may contribute to the identification of new therapeutics for ALS-FTD and aging-related diseases. 相似文献