首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   16篇
  国内免费   1篇
  202篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   9篇
  2013年   7篇
  2012年   11篇
  2011年   9篇
  2010年   9篇
  2009年   10篇
  2008年   9篇
  2007年   8篇
  2006年   9篇
  2005年   1篇
  2004年   4篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   7篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
61.
Enyedi AJ  Raskin I 《Plant physiology》1993,101(4):1375-1380
Salicylic acid (SA) is a putative signal that activates plant resistance to pathogens. SA levels increase systemically following the hypersensitive response produced by tobacco mosaic virus (TMV) inoculation of tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves. The SA increase in the inoculated leaf coincided with the appearance of a [beta]-glucosidase-hydrolyzable SA conjugate identified as [beta]-O-D-glucosylsalicylic acid (GSA). SA and GSA accumulation in the TMV-inoculated leaf paralleled the increase in the activity of a UDP-glucose:salicylic acid 3-O-glucosyltransferase (EC 2.4.1.35) ([beta]-GTase) capable of converting SA to GSA. Healthy tissues had constitutive [beta]-GTase activity of 0.076 milliunits g-1 fresh weight. This activity started to increase 48 h after TMV inoculation, reaching its maximum (6.7-fold induction over the basal levels) 72 h after TMV inoculation. No significant GSA or elevated [beta]-Gtase activity could be detected in the healthy leaf immediately above the TMV-inoculated leaf. The effect of TMV inoculation on the [beta]-GTase and GSA accumulation could be duplicated by infiltrating tobacco leaf discs with SA at the levels naturally produced in TMV-inoculated leaves (2.7-27.0 [mu]g g-1 fresh weight). Pretreatment of leaf discs with the protein synthesis inhibitor cycloheximide inhibited the induction of [beta]-GTase by SA and prevented the formation of GSA. Of 12 analogs of SA tested, only 2,6-dihydroxybenzoic acid induced [beta]-GTase activity.  相似文献   
62.
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.  相似文献   
63.
In mixed membrane vesicles prepared from human platelets, the presence of two distinct calcium pump enzymes (molecular mass 100 and 97 kDa) was demonstrated by 32P autoradiography, immunoblotting, and thapsigargin inhibition. Both the 100- and 97-kDa membrane proteins showed calcium-dependent phosphoenzyme formation and reacted with a polyclonal anti-sarcoplasmic reticulum calcium pump antiserum, while only the 100-kDa protein reacted with the antiserum specific for the sarco-endoplasmic reticulum-type calcium transport ATPase 2b isoform. Thapsigargin, inhibiting active calcium transport in platelet membrane vesicles, predominantly blocked the phosphoenzyme formation of the 100-kDa isoform and of the tryptic calcium pump fragments of 55 and 35 kDa, while lanthanum specifically increased the phosphoenzyme formation of the 97-kDa enzyme and of the tryptic fragment of 80 kDa. These results indicate the presence of the sarco-endoplasmic reticulum-type calcium transport ATPase 2b isoform and of a yet unidentified, 97-kDa calcium pump protein in human platelet membranes.  相似文献   
64.
65.

Background  

The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS) experiments.  相似文献   
66.
In this study, we examined the utility of pollen morphology for resolving questions about the evolutionary history of Billia, which is a poorly known genus of Neotropical trees. Billia has been traditionally circumscribed with two species and treated as sister to Aesculus L. However, the number of species in Billia is uncertain, because the genus exhibits abundant morphological diversity but little discontinuous variation. Therefore, Billia may be monotypic and highly polymorphic, or it may have two species with blurred boundaries due to incipient speciation and/or hybridization. Moreover, one recent molecular phylogenetic study shows Billia nested withinAesculus. Our work sought to address the following questions: (i) Are there discontinuities in the pollen of Billia that may suggest species boundaries? (ii) Does the pollen of Billia show evidence for inter-specific hybridization? (iii) Do the exine morphology and size of pollen in Billia differ from those in Aesculus? Our results from scanning electron microscopy showed that pollen exine morphology is not taxonomically informative in Billia but that there are significant differences in pollen size between red- and white-flowered individuals. Thus, our pollen data support the utility of flower color in Billia for species delimitation. Our assessments of pollen viability do not support hybridization in the genus, but cannot be used to rule it out. Finally, pollen exine morphology may lend some support to an evolutionary origin ofBillia within eastern North American Aesculus. In contrast, data on pollen size suggest that Billia may belong in a topological position outside of Aesculus.  相似文献   
67.
A loss-of-function mutation in the Arabidopsis SSI2/FAB2 gene, which encodes a plastidic stearoyl-acyl-carrier protein desaturase, has pleiotropic effects. The ssi2 mutant plant is dwarf, spontaneously develops lesions containing dead cells, accumulates increased salicylic acid (SA) levels, and constitutively expresses SA-mediated, NPR1-dependent and -independent defense responses. In parallel, jasmonic acid-regulated signaling is compromised in the ssi2 mutant. In an effort to discern the involvement of lipids in the ssi2-conferred developmental and defense phenotypes, we identified suppressors of fatty acid (stearoyl) desaturase deficiency (sfd) mutants. The sfd1, sfd2, and sfd4 mutant alleles suppress the ssi2-conferred dwarfing and lesion development, the NPR1-independent expression of the PATHOGENESIS-RELATED1 (PR1) gene, and resistance to Pseudomonas syringae pv maculicola. The sfd1 and sfd4 mutant alleles also depress ssi2-conferred PR1 expression in NPR1-containing sfd1 ssi2 and sfd4 ssi2 plants. By contrast, the sfd2 ssi2 plant retains the ssi2-conferred high-level expression of PR1. In parallel with the loss of ssi2-conferred constitutive SA signaling, the ability of jasmonic acid to activate PDF1.2 expression is reinstated in the sfd1 ssi2 npr1 plant. sfd4 is a mutation in the FAD6 gene that encodes a plastidic omega6-desaturase that is involved in the synthesis of polyunsaturated fatty acid-containing lipids. Because the levels of plastid complex lipid species containing hexadecatrienoic acid are depressed in all of the sfd ssi2 npr1 plants, we propose that these lipids are involved in the manifestation of the ssi2-conferred phenotypes.  相似文献   
68.
Cancer therapy     
In recent years a growing recognition that molecularly-targeted therapies face formidable obstacles has revived interest in more generic tumor cell phenotypes that could be exploited for therapy. Two recent reports demonstrate that cancer cell survival is critically dependent on the activity of MTH1, a nucleotide pyrophosphatase that converts the oxidized nucleotides 8-oxo-dGTP and 2-OH-dATP to the corresponding monophosphates, thus preventing their incorporation into genomic DNA. Tumor cells frequently overexpress MTH1, probably because malignant transformation creates oxidative stress that renders the nucleotide pool highly vulnerable to oxidation. As a result, MTH1 inhibition in cancer cells results in accumulation and incorporation of 8-oxo-dGTP and 2-OH-dATP into DNA, leading to DNA damage and cell death. This toxic effect is highly cancer cell-specific, as MTH1 is generally dispensable for the survival of normal, untransformed cells. Importantly, MTH1 proves to be a “druggable” enzyme that can be inhibited both by an existing protein kinase inhibitor drug, crizotinib, and by novel compounds identified through screening. Inhibition of MTH1 leading to toxic accumulation of oxidized nucleotides specifically in tumor cells therefore represents an example of a “non-personalised” approach to cancer therapy.  相似文献   
69.
Constitutive triple response 1 (CTR1) is a protein kinase that represses plant responses to ethylene. Recently, we have shown that CTR1 function is negatively regulated by the lipid second messenger phosphatidic acid (PA) in vitro.1 PA was shown to inhibit (1) CTR1''s protein kinase activity, (2) the intramolecular interaction between N-terminus and kinase domain, and (3) the interaction of CTR1 with the ethylene receptor ETR1. PA typically accumulates within minutes in response to biotic or abiotic stresses, which are known to induce ethylene formation. Although long-term treatment with ethephon does stimulate PA accumulation, our results show no fast increase in PA in response to ethylene. A speculative model is presented which explains how stress-induced PA formation could switch on downstream ethylene responses via interaction of the lipid with CTR1.Key words: lipid signaling, phosphatidic acid, ethylene, constitutive triple response 1, plant stress signaling, protein kinase, phospholipase D  相似文献   
70.
Osmotic cues from the environment mediate rapid detection of epithelial breaches by leukocytes in larval zebrafish tail fins. Using intravital luminescence and fluorescence microscopy, we now show that osmolarity differences between the interstitial fluid and the external environment trigger ATP release at tail fin wounds to initiate rapid wound closure through long-range activation of basal epithelial cell motility. Extracellular nucleotide breakdown, at least in part mediated by ecto-nucleoside triphosphate diphosphohydrolase 3 (Entpd3), restricts the range and duration of osmotically induced cell migration after injury. Thus, in zebrafish larvae, wound repair is driven by an autoregulatory circuit that generates pro-migratory tissue signals as a function of environmental exposure of the inside of the tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号