首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   16篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   9篇
  2013年   7篇
  2012年   11篇
  2011年   9篇
  2010年   9篇
  2009年   10篇
  2008年   9篇
  2007年   8篇
  2006年   9篇
  2005年   1篇
  2004年   4篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   7篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有199条查询结果,搜索用时 93 毫秒
31.

Background  

Developing methods for understanding the connectivity of signalling pathways is a major challenge in biological research. For this purpose, mathematical models are routinely developed based on experimental observations, which also allow the prediction of the system behaviour under different experimental conditions. Often, however, the same experimental data can be represented by several competing network models.  相似文献   
32.
The hypersensitive response (HR) is a cell death phenomenon associated with localized resistance to pathogens. Biphasic patterns in the generation of H2O2, salicylic acid and ethylene have been observed in tobacco during the early stages of the HR. These biphasic models reflect an initial elicitation by pathogen-associated molecular patterns followed by a second phase, induced by pathogen-encoded avirulence gene products. The first phase has been proposed to potentiate the second, to increase the efficacy of plant resistance to disease. This potentiation is comparable to the “priming” of plant defenses which is seen when plants display systemic resistance to disease. The events regulating the generation of the biphasic wave, or priming, remains obscure, however recently we demonstrated a key role for nitric oxide in this process in a HR occurring in tobacco. Here we use laser photoacoustic detection to demonstrate that biphasic ethylene production also occurs during a HR occurring in Arabidopsis. We suggest that ethylene emanation during the HR represents a ready means of visualising biphasic events during the HR and that exploiting the genomic resources offered by this model species will facilitate the development of a mechanistic understanding of potentiating/priming processes.Key words: hypersensitive response, biphasic patterns, potentiation, defense priming, ethylene, ArabidopsisThe Hypersensitive Response (HR) is a cell death process which occurs at the site of attempted pathogen attack and which has been associated with host resistance.1 Much work on the regulation of the HR has indicated the importance of H2O2,2 and NO.3 A feature of H2O2 generation during the HR is its biphasic pattern (Fig. 1A). The first rise reflects elicitation by pathogen-associated molecular patterns (PAMPs)4 and the second reflects the interaction between a pathogen-encoded avirulence (avr) gene product with a plant resistance (R) gene. A key aspect of the first rise is the initiation of salicylic acid (SA) synthesis which potentiates the second rise and hence the potency of plant defense and the HR.5Open in a separate windowFigure 1Patterns of defense signal generation during the Pseudomonas syringae pv. phaseolicola elicited-hypersensitive response in tobacco (Nicotiana tabacum). Generation of (A) H2O2 (●, Mur18); (B) nitric oxide (◇; Mur12 (C) salicylic acid (SA, ■19) and (D) ethylene (○ Mur9) during a HR elicited by Pseudomonas syringae pv. phaseolicola (Psph) in tobacco cv. Samsun NN. In (A) a phase where SA acts to augment the second rise in H2O2—the potentiation phase—is highlighted. The potentiation phase is likely to be similar to defense “priming”.6 Methodological details are contained within the appropriate references. (E) A possible model for biphasic defense signal regulation during the Psph-elicited HR in tobacco. During an initial phase NO and H2O2 act to initiate SA biosynthesis, where SA and NO act to initiate a “H2O2 biphasic switch”. This could initially suppress both SA and the H2O2 generation but subsequently acts to potentiate a second phase of H2O2 generation. This in turn increases SA biosynthesis which could act with NO to initiate the “C2H4 biphasic switch” to potentiate ethylene production. These (and other) signals contribute to initiation of the HR and SAR.This potentiation mechanism appears to be similar to defense priming; when whole plants display systemic resistance to disease as opposed to a localized resistance against pathogens. Priming can be initiated (the “primary stimulus”) following attack with a necrotizing pathogen (leading to “systemic acquired resistance”, SAR) or non-pathogenic rhizosphere bacteria (to confer “induced systemic resistance”, ISR). In the primed state a plant stimulates a range of plant defense genes, produces anti-microbial phytoalexins and deposits cell wall strengthening molecules, but only on imposition of a “secondary stimulus”.6 Such secondary stimuli include SA3 or PAMPs7 and is likely to be mechanistically similar to the potentiation step in the biphasic pattern of H2O2 generation (shaded in Fig. 1A). Accordingly, the two phases in the biphasic wave represent primary and secondary stimuli in priming.Highlighting a similarity between local HR-based events and priming, adds further impetus to efforts aiming to describe the underlying mechanism(s), however both phenomena remain poorly understood. Besides SA, both jasmonates and abscisic acid (ABA) have been shown to prime defenses as have a range of non-plant chemicals, with β-aminobutyric acid (BABA) being perhaps most widely used.6,8 Mutants which fail to exhibit BABA-mediated potentiation were defective in either a cyclin-dependent kinase-like protein, a polyphosphoinositide phosphatase or an ABA biosynthetic enzyme.8We have recently investigated biphasic ethylene production during the HR in tobacco elicited by the nonhost HR-eliciting bacterial pathogen Pseudomonas syringae pv. phaseolicola.9 As with H2O2 generation, this pattern reflected PAMP-and AVR-dependent elicitation events and included a SA-mediated potentiation stage. Crucially, we also showed that NO was a vital component in the SA-potentiation mechanism. When this finding is integrated with our other measurements of defense signal generation in the same host-pathogen system the complexity in the signaling network is revealed (Fig. 1). NO generation (Fig. 1B) appeared to be coincident with the first rise in H2O2 (Fig. 1A) which initiated SA biosynthesis10,11 and together would contribute to the first small, but transient, rise in that hormone (Fig. 1C). In line with established models5 this momentary rise in SA coincides with the potentiation phase (shaded in Fig. 1A) required to augment the second rise in ROS. However, ethylene production seems to be correlated poorly with the patterns of NO, H2O2 and SA (Fig. 1D). Nevertheless, biphasic ethylene production was found to reflect PAMP and AVR-dependent recognition and included a SA-mediated potentiation step.9 Hence, ethylene production could be used as a post-hoc indicator of the potentiation mechanism. Therefore, our discovery that the second wave of ethylene production—a “biphasic switch”—is influenced by NO acting with SA could also be relevant to the H2O2 generation. Significantly, the second phases in both H2O2 and ethylene production occur exactly where SA and NO production coincides; in the case of H2O2 generation 2–4 h post challenge and with ethylene 6 h onwards (Fig. 1E).Thus, ethylene production represents a readily assayable marker to indicate perturbations in the underlying biphasic and possible priming mechanisms. As we have demonstrated, laser photoacoustic detection (LAPD) is a powerful on-line approach to determine in planta ethylene production in tobacco9,12 but any mechanistic investigations would be greatly facilitated if the genetic resources offered by the model species Arabidopsis could be exploited.To address this, Arabidopsis Col-0 rosettes were vacuum infiltrated with either Pseudomonas syringae pv. tomato (Pst) avrRpm1 (HR-eliciting), the virulent Pst strain and the non-HR eliciting and non-virulent Pst hrpA strain. Ethylene production was monitored by LAPD (Fig. 2A). Significantly, Pst avrRpm1 initiated a biphasic pattern of ethylene production whose kinetics were very similar to that seen in tobacco (compare Figs. 2A with with1D).1D). Inoculations with Pst and Pst hrpA only displayed the first PAMP-dependent rise in ethylene production. Thus, these data establish that Arabidopsis can be used to investigate biphasic switch mechanism(s) in ethylene production during the HR and possibly defense priming. When considering such mechanisms, it is relevant to highlight the work of Foschi et al.13 who observed that biphasic activation of a monomeric G protein to cause phase-specific activation of different kinase cascades. Interestingly, ethylene has been noted to initiate biphasic activation of G proteins and kinases in Arabidopsis, although differing in kinetics to the phases seen during the HR.14 Further, plant defense priming has been associated with the increased accumulation of MAP kinase protein.6Open in a separate windowFigure 2Ethylene in the Pseudomonas syringae pv. tomato elicited-hypersensitive response in Arabidopsis thaliana. (A) Ethylene production from 5 week old short day (8 h light 100 µmol.m2.sec−1) grown Arabidopsis rosette leaves which were vacuum infiltrated with bacterial suspensions (2 × 106 colony forming units.ml−1) of Pseudomonas syringae pv. tomato (Pst) strains detected using laser photoacoustic detection (LAPD). Experimental details of the ethylene detection by LAPD are detailed in Mur et al.9 The intercellular spaces in leaves were infiltrated with the HR-eliciting strain Pst avrRpm1, (■), the virulent strain Pst (△) or the non-virulent and non-HR eliciting derivative, Pst hrpA (◇). (B) The appearance of Arabidopsis Col-0 and etr1-1 leaves at various h following injection with 2 × 106 c.f.u.mL−1 with of Pst avrRpm1. (C) Explants (1 cm diameter discs) from Arabidopsis leaf areas infiltrated with suspensions of Pst avrRpm1 were placed in a 1.5 cm diameter well, bathed in 1 mL de-ionized H2O. Changes in the conductivity of the bathing solution, as an indicator of electrolyte leakage from either wild type Col-0 (◆), mutants which were compromised in ethylene signaling; etr1-1 (□), ein2-2 (▲) or which overproduced ethylene; eto2-1 (●) were measured using a conductivity meter. Methodological details are set out in Mur et al.9A further point requires consideration; the role of ethylene as a direct contributor to plant defense.15 The contribution of ethylene to the HR has been disputed,16 but in tobacco we have observed that altered ethylene production influenced the formation of a P. syringae pv. phaseolicola elicited HR.9 In Arabidopsis, cell death in the ethylene receptor mutant etr1-1 following inoculation with Pst avrRpm1 is delayed compared to wild type (Fig. 2B). When electrolyte leakage was used to quantify Pst avrRpm1 cell death, both etr1-1 and the ethylene insensitive signaling mutant ein2-1 exhibited slower death than wild-type but in the ethylene overproducing mutant eto2, cell death was augmented (Fig. 2C). These data indicate that ethylene influences the kinetics of the HR.Taking these data together we suggest that the complexity of signal interaction during the HR or in SAR/ISR could be further dissected by combining the genetic resources of Arabidopsis with measurements of ethylene production using such sensitive approaches as LAPD.  相似文献   
33.
The two-pore domain K(+) channel, TRESK (TWIK-related spinal cord K(+) channel) is activated in response to the calcium signal by the calcium/calmodulin-dependent protein phosphatase, calcineurin. In the present study we report that calcineurin also interacts with TRESK via an NFAT-like docking site, in addition to its enzymatic action. In its intracellular loop, mouse TRESK possesses the amino acid sequence, PQIVID, which is similar to the calcineurin binding consensus motif, PXIXIT (where X denotes any amino acids), necessary for NFAT (nuclear factor of activated T cells) activation and nuclear translocation. Mutations of the PQIVID sequence of TRESK to PQIVIA, PQIVAD, or PQAVAD increasingly deteriorated the calcium-dependent activation in the listed order and correspondingly reduced the benzocaine sensitivity (a property discriminating activated channels from resting ones), when it was measured after the calcium signal in Xenopus oocytes. Microinjection of VIVIT peptide, designed to inhibit the NFAT-calcineurin interaction specifically, also eliminated TRESK activation. The intracellular loop of TRESK, expressed as a GST fusion protein, bound constitutively active calcineurin in vitro. PQAVAD mutation as well as addition of VIVIT peptide to the reaction abrogated this calcineurin binding. Wild type calcineurin was recruited to GST-TRESK-loop in the presence of calcium and calmodulin. These results indicate that the PQIVID sequence is a docking site for calcineurin, and its occupancy is required for the calcium-dependent regulation of TRESK. Immunosuppressive compounds, developed to target the NFAT binding site of calcineurin, are also expected to interfere with TRESK regulation, in addition to their desired effect on NFAT.  相似文献   
34.
Ca2+ dysregulation is a hallmark of excitotoxicity, a process that underlies multiple neurodegenerative disorders. The plasma membrane Ca2+ ATPase (PMCA) plays a major role in clearing Ca2+ from the neuronal cytoplasm. Here, we show that the rate of PMCA-mediated Ca2+ efflux from rat hippocampal neurons decreased following treatment with an excitotoxic concentration of glutamate. PMCA-mediated Ca2+ extrusion following a brief train of action potentials exhibited an exponential decay with a mean time constant (tau) of 8.8 +/- 0.2 s. Four hours following the start of a 30 min treatment with 200 microm glutamate, a second population of cells emerged with slowed recovery kinetics (tau = 16.5 +/- 0.3 s). Confocal imaging of cells expressing an enhanced green fluorescent protein (EGFP)-PMCA4b fusion protein revealed that glutamate treatment internalized EGFP and that cells with reduced plasma membrane fluorescence had impaired Ca2+ clearance. Treatment with inhibitors of the Ca2+-activated protease calpain protected PMCA function and prevented EGFP-PMCA internalization. PMCA internalization was triggered by activation of NMDA receptors and was less pronounced for a non-toxic concentration of glutamate relative to one that produces excitotoxicity. PMCA isoform 2 also internalized following exposure to glutamate, although the Na+/K+ ATPase did not. These data suggest that glutamate exposure initiated protease-mediated internalization of PMCAs with a corresponding loss of function that may contribute to the Ca2+ dysregulation that accompanies excitotoxicity.  相似文献   
35.
36.
37.
38.
39.
Lemur beta-related globin genes have been isolated and sequenced. Orthology of prosimian and human epsilon-, gamma-, and beta-related globin genes was established by dot-matrix analysis. All of these lemur globin genes potentially encode functional beta-related globin polypeptides, though precisely when the gamma-globin gene is expressed remains unknown. The organization of the 18-kb brown lemur beta-globin gene cluster (5' epsilon-gamma-[psi eta-delta]-beta 3') is consistent with its evolution by contraction via unequal crossing-over from the putative ancestral mammalian beta-globin gene cluster (5' epsilon-gamma- eta-delta-beta 3'). The dwarf lemur nonadult globin genes are arranged as in the brown lemur. Similar levels of synonymous (silent) nucleotide substitutions and noncoding DNA sequence differences have accumulated between species in all of these genes, suggesting a uniform rate of noncoding DNA divergence throughout primate beta-globin gene clusters. These differences are comparable with those observed in the nonfunctional psi eta pseudogene and have therefore accumulated at the presumably maximal neutral rate. In contrast, nonsynonymous (replacement) nucleotide substitutions show a significant heterogeneity in distribution for both the same gene in different lineages and different genes in the same lineage. These major fluctuations in replacement but not silent substitution rates cannot be attributed to changes in mutation rate, suggesting that changes in the rate of globin polypeptide evolution in primates is not governed solely by variable mutation rates.   相似文献   
40.
In mixed membrane vesicles prepared from human platelets, the presence of two distinct calcium pump enzymes (molecular mass 100 and 97 kDa) was demonstrated by 32P autoradiography, immunoblotting, and thapsigargin inhibition. Both the 100- and 97-kDa membrane proteins showed calcium-dependent phosphoenzyme formation and reacted with a polyclonal anti-sarcoplasmic reticulum calcium pump antiserum, while only the 100-kDa protein reacted with the antiserum specific for the sarco-endoplasmic reticulum-type calcium transport ATPase 2b isoform. Thapsigargin, inhibiting active calcium transport in platelet membrane vesicles, predominantly blocked the phosphoenzyme formation of the 100-kDa isoform and of the tryptic calcium pump fragments of 55 and 35 kDa, while lanthanum specifically increased the phosphoenzyme formation of the 97-kDa enzyme and of the tryptic fragment of 80 kDa. These results indicate the presence of the sarco-endoplasmic reticulum-type calcium transport ATPase 2b isoform and of a yet unidentified, 97-kDa calcium pump protein in human platelet membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号