首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3182篇
  免费   216篇
  国内免费   2篇
  3400篇
  2023年   15篇
  2022年   37篇
  2021年   67篇
  2020年   57篇
  2019年   66篇
  2018年   71篇
  2017年   68篇
  2016年   105篇
  2015年   135篇
  2014年   174篇
  2013年   203篇
  2012年   237篇
  2011年   226篇
  2010年   129篇
  2009年   149篇
  2008年   194篇
  2007年   186篇
  2006年   194篇
  2005年   151篇
  2004年   167篇
  2003年   149篇
  2002年   143篇
  2001年   23篇
  2000年   16篇
  1999年   29篇
  1998年   35篇
  1997年   24篇
  1996年   22篇
  1995年   22篇
  1994年   18篇
  1993年   28篇
  1992年   20篇
  1991年   12篇
  1990年   26篇
  1989年   22篇
  1988年   13篇
  1987年   12篇
  1986年   16篇
  1985年   10篇
  1984年   9篇
  1983年   10篇
  1982年   21篇
  1981年   13篇
  1980年   17篇
  1979年   6篇
  1978年   5篇
  1977年   6篇
  1976年   7篇
  1975年   5篇
  1973年   4篇
排序方式: 共有3400条查询结果,搜索用时 15 毫秒
91.
92.
Programmed cell death is an essential process for proper neural development. Cell death, with its similar regulatory and executory mechanisms, also contributes to the origin or progression of many or even all neurodegenerative diseases. An understanding of the mechanisms that regulate cell death during neural development may provide new targets and tools to prevent neurodegeneration. Many studies that have focused mainly on insulin-like growth factor-I (IGF-I), have shown that insulin-related growth factors are widely expressed in the developing and adult nervous system, and positively modulate a number of processes during neural development, as well as in adult neuronal and glial physiology. These factors also show neuroprotective effects following neural damage. Although some specific actions have been demonstrated to be anti-apoptotic, we propose that a broad neuroprotective role is the foundation for many of the observed functions of the insulin-related growth factors, whose therapeutical potential for nervous system disorders may be greater than currently accepted.  相似文献   
93.
94.
Keyes KA  Mann L  Teicher B  Alvarez E 《Cytokine》2003,21(2):98-104
Tumor microenvironment plays a critical role in tumor growth, angiogenesis, and metastasis. Differences in site of tumor implantation result in differences in tumor growth, metastasis, as well as response to chemotherapy. We hypothesized that tumor-induced angiogenic growth factor production into the plasma will also be influenced by site of tumor implantation. We evaluated the site-dependent production of angiogenic growth factors in the plasma of tumor bearing animals at two different sites of implantation. Plasma levels of tumor necrosis factor-alpha (TNF-alpha), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were evaluated in nude mice bearing A2780, SKOV-3, or OVCAR-3 human ovarian tumors, as well as Panc-1, AsPC-1, or BxPC-3 human pancreatic tumors grown as subcutaneous (SC) xenografts or in the intraperitoneal (IP) cavity. Plasma VEGF and bFGF levels produced by two ovarian tumor lines and two pancreatic tumor lines were substantially higher when the tumors were implanted in the IP cavity than in the SC space. These studies indicated that the site of tumor implantation was an important determinant in the production of plasma VEGF and bFGF levels. As more and more anti-angiogenic agents are developed, the need for appropriate animal models becomes apparent. These results suggest the demand for an appropriate model for the in vivo evaluation of anti-angiogenesis.  相似文献   
95.
Insulin receptor substrate (IRS) proteins play important roles in hepatic nutrient homeostasis. Since glucokinase (GK) and glucokinase regulatory protein (GKRP) function as key glucose sensors, we have investigated the expression of GK and GKRP in liver of Irs-2 deficient mice and Irs2(−/−) mice where Irs2 was reintroduced specifically into pancreatic β-cells [RIP-Irs-2/IRS-2(−/−)]. We observed that liver GK activity was significantly lower (p<0.0001) in IRS-2(−/−) mice. However, in RIP-Irs-2/IRS-2(−/−) mice, GK activity was similar to the values observed in wild-type animals. GK activity in hypothalamus was not altered in IRS-2(−/−) mice. GK and GKRP mRNA levels in liver of IRS-2(−/−) were significantly lower, whereas in RIP-Irs-2/IRS-2(−/−) mice, both GK and GKRP mRNAs levels were comparable to wild-type animals. At the protein level, the liver content of GK was reduced in IRS-2(−/−) mice as compared with controls, although GKRP levels were similar between these experimental models. Both GK and GKRP levels were lower in RIP-Irs-2/IRS-2(−/−) mice. These results suggest that IRS-2 signalling is important for maintaining the activity of liver GK. Moreover, the differences between liver and brain GK may be explained by the fact that expression of hepatic, but not brain, GK is controlled by insulin. GK activity was restored by the β-cell compensation in the RIP-Irs-2/IRS-2 mice. Interestingly, GK and GKRP protein expression remained low in RIP-Irs-2/IRS-2(−/−) mice, perhaps reflecting different mRNA half-lives or alterations in the process of translation and post-translational regulation.  相似文献   
96.
Oxovanadium(IV) complexes of the polyalcohols sorbitol, galactitol, and mannitol, of stoichiometry Na(2)[VO(L)(2)].H(2)O, were obtained from aqueous alkaline solutions. They were characterized by elemental analysis, infrared and UV-vis spectroscopies, thermoanalytical (thermogravimetric and differential thermal analysis) data, and magnetic susceptibility measurements. The biological activities of the complexes on the proliferation, differentiation, and glucose consumption were tested on osteoblast-like cells (MC3T3E1 osteoblastic mouse calvaria-derived cells and UMR106 rat osteosarcoma-derived cells) in culture. The three complexes exerted a biphasic effect on cell proliferation, being slight stimulating agents at low concentrations and inhibitory in the range of 25-100 microM. All the complexes inhibited cell differentiation in tumor osteoblasts. Their effects on glucose consumption were also discussed. The free ligands did not show any effect on the studied biological parameters.  相似文献   
97.
Cholestasis occurs in a variety of hepatic diseases and causes damage due to accumulation of bile acids in the liver. The aim was to investigate the effect of several bile acids, i.e. chenodeoxycholic, taurochenodeoxycholic, deoxycholic, taurodeoxycholic, ursodeoxycholic, lithocholic and taurolithocholic (TLC), in inducing oxidative damage. Hepatic tissue of male Sprague-Dawley rats was incubated with or without 1 mM of each bile acid, with or without 0.1 mM FeCl3 and 0.1 mM ascorbic acid for the purpose of generating free radicals. Several bile acids increased lipid and protein oxidation, with TLC being the most pro-oxidative (657% and 175% in homogenates and 350% and 311% in membranes, respectively). TLC also enhanced iron-induced oxidative stress to lipids (21% in homogenates and 29% in membranes) and to proteins (74% in membranes). This enhancement was dose- and time-dependent and was reduced by melatonin. These results suggest that bile acids differentially mediate hepatic oxidative stress and may be involved in the physiopathology of cholestasis.  相似文献   
98.
Electrotherapy with direct current delivered through implanted electrodes is used for local control of solid tumors in both preclinical and clinical studies. The aim of this research is to develop a solution method for obtaining a three-dimensional analytical expression for potential and electric current density as functions of direct electric current intensity, differences in conductivities between the tumor and the surrounding healthy tissue, and length, number and polarity of electrodes. The influence of these parameters on electric current density in both media is analyzed. The results show that the electric current density in the tumor is higher than that in the surrounding healthy tissue for any value of these parameters. The conclusion is that the solution method presented in this study is of practical interest because it provides, in a few minutes, a convenient way to visualize in 3D the electric current densities generated by a radial electrode array by means of the adequate selection of direct current intensity, length, number, and polarity of electrodes, and the difference in conductivity between the solid tumor and its surrounding healthy tissue.  相似文献   
99.
100.
Vitamin E (alpha-tocopherol) has demonstrated antioxidant activity and gene-regulatory properties. d-Galactosamine (D-GalN)-induced cell death is mediated by nitric oxide in hepatocytes, and it is associated with hepatic steatosis. The beneficial properties of alpha-tocopherol and their relation to oxidative stress and gene regulation were assessed in D-GalN-induced cell death. Hepatocytes were isolated from human liver resections by a collagenase perfusion technique. alpha-Tocopherol (50 microM) was administered at the advanced stages (10 h) of D-GalN-induced cell death in cultured hepatocytes. Cell death, oxidative stress, alpha-tocopherol metabolism, and NF-kappaB-, pregnane X receptor (PXR)-, and peroxisome proliferator-activated receptor (PPAR-alpha)-associated gene regulation were estimated in the hepatocytes. D-GalN increased cell death and alpha-tocopherol metabolism. alpha-Tocopherol exerted a moderate beneficial effect against apoptosis and necrosis induced by D-GalN. Induction (rifampicin) or inhibition (ketoconazole) of alpha-tocopherol metabolism and overexpression of PXR showed that the increase in PXR-related CYP3A4 expression caused by alpha-tocopherol enhanced cell death in hepatocytes. Nevertheless, the reduction in NF-kappaB activation and inducible nitric oxide synthase expression and the enhancement of PPAR-alpha and carnitine palmitoyl transferase gene expression by alpha-tocopherol may be relevant for cell survival. In conclusion, the cytoprotective properties of alpha-tocopherol are mostly related to gene regulation rather than to antioxidant activity in toxin-induced cell death in hepatocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号