首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3486篇
  免费   252篇
  国内免费   2篇
  3740篇
  2023年   17篇
  2022年   38篇
  2021年   72篇
  2020年   65篇
  2019年   74篇
  2018年   79篇
  2017年   72篇
  2016年   112篇
  2015年   145篇
  2014年   184篇
  2013年   221篇
  2012年   252篇
  2011年   241篇
  2010年   140篇
  2009年   164篇
  2008年   207篇
  2007年   199篇
  2006年   208篇
  2005年   164篇
  2004年   185篇
  2003年   165篇
  2002年   155篇
  2001年   33篇
  2000年   27篇
  1999年   35篇
  1998年   37篇
  1997年   26篇
  1996年   24篇
  1995年   22篇
  1994年   24篇
  1993年   32篇
  1992年   21篇
  1991年   12篇
  1990年   33篇
  1989年   26篇
  1988年   19篇
  1987年   15篇
  1986年   21篇
  1985年   15篇
  1984年   14篇
  1983年   12篇
  1982年   21篇
  1981年   14篇
  1980年   18篇
  1979年   9篇
  1978年   10篇
  1977年   8篇
  1976年   11篇
  1975年   5篇
  1969年   4篇
排序方式: 共有3740条查询结果,搜索用时 15 毫秒
21.
Previously, metalloproteinase was isolated and identified from Trichomonas vaginalis, belonging to the aminopeptidase P-like metalloproteinase subfamily A/B, family M24 of clan MG, named TvMP50. The native and recombinant TvMP50 showed proteolytic activity, determined by gelatin zymogram, and a 50 kDa band, suggesting that TvMP50 is a monomeric active enzyme. This was an unexpected finding since other Xaa-Pro aminopeptidases/prolidases are active as a biological unit formed by dimers/tetramers. In this study, the evolutionary history of TvMP50 and the preliminary crystal structure of the recombinant enzyme determined at 3.4 Å resolution is reported. TvMP50 was shown to be a type of putative, eukaryotic, monomeric aminopeptidase P, and the crystallographic coordinates showed a monomer on a “pseudo-homodimer” array on the asymmetric unit that resembles the quaternary structure of the M24B dimeric family and suggests a homodimeric aminopeptidase P-like enzyme as a likely ancestor. Interestingly, TvMP50 had a modified N-terminal region compared with other Xaa-Pro aminopeptidases/prolidases with three-dimensional structures; however, the formation of the standard dimer is structurally unstable in aqueous solution, and a comparably reduced number of hydrogen bridges and lack of saline bridges were found between subunits A/B, which could explain why TvMP50 portrays monomeric functionality. Additionally, we found that the Parabasalia group contains two protein lineages with a “pita bread” fold; the ancestral monomeric group 1 was probably derived from an ancestral dimeric aminopeptidase P-type enzyme, and group 2 has a probable dimeric kind of ancestral eukaryotic prolidase lineage. The implications of such hypotheses are also presented.  相似文献   
22.
Harmful Algae Blooms (HAB) are a frequent phenomenon in the Gulf of Nicoya, Costa Rica, as in other parts of the world. The morphology and physiology of these microalgae are important because HAB species have adaptive characteristics. The production of high concentrations of paralytic toxins by Ceratium dinoflagellates has only been documented at the experimental level. However, this genus has been associated with the mortality of aquatic organisms, including oyster and shrimp larva, and fish, and with decreased water quality. Recently, fishermen reported massive mortality of encaged fish near Tortuga Island (Gulf of Nicoya). Samples were taken from an algal bloom that had produced an orange coloration and had a strong foul-smelling odor. Ultrastructural details were examined with scanning electron microscopy. The dinoflagellates Ceratium dens, C. furca and C. fusus were found in samples taken at the surface. The cell count revealed four million cells of this genus per liter. The morphological variability of these species is high; therefore electron microscopy is an useful tool in the ultrastructural study of these organisms. This is the first time that three Ceratium species are reported concurrently producing harmful blooms in Costa Rica.  相似文献   
23.
Contemporary enzymes are highly efficient and selective catalysts. However, due to the intrinsically very reactive nature of active sites, gratuitous secondary reactions are practically unavoidable. Consequently, even the smallest cell, with its limited enzymatic repertoire, has the potential to carry out numerous additional, very likely inefficient, secondary reactions. If selectively advantageous, secondary reactions could be the basis for the evolution of new fully functional enzymes. Here, we investigated if Escherichia coli has cryptic enzymatic activities related to thiamin biosynthesis. We selected this pathway because this vitamin is essential, but the cell's requirements are very small. Therefore, enzymes with very low activity could complement the auxotrophy of strains deleted of some bona fide thiamin biosynthetic genes. By overexpressing the E. coli's protein repertoire, we selected yjbQ, a gene that complemented a strain deleted of the thiamin phosphate synthase (TPS)-coding gene thiE. In vitro studies confirmed TPS activity, and by directed evolution experiments, this activity was enhanced. Structurally oriented mutagenesis allowed us to identify the putative active site. Remote orthologs of YjbQ from Thermotoga, Sulfolobus, and Pyrococcus were cloned and also showed thiamin auxotrophy complementation, indicating that the cryptic TPS activity is a property of this protein family. Interestingly, the thiE- and yjbQ-coded TPSs are analog enzymes with no structural similarity, reflecting distinct evolutionary origin. These results support the hypothesis that the enzymatic repertoire of a cell such as E. coli has the potential to perform vast amounts of alternative reactions, which could be exploited to evolve novel or more efficient catalysts.  相似文献   
24.
Protein kinase D1 (PKD1) plays a vital role in signal transduction, cell proliferation, membrane trafficking, and cancer; however, the majority of the studies up to date had centered primarily on PKD1 functions in interphase, very little is known about its role during cell division. We previously demonstrated that during mitosis PKD1 is activated and associated with centrosomes, spindles, and midbodies. However, these observations did not address whether PKD1 was associated with mitosis regulation. Accordingly, we used rapidly acting PKD-specific inhibitors to examine the contribution of PKD1 the sequence of events in mitosis. We found that although PKD1 overexpression did not affect mitosis progression, suppression of its catalytic activity by two structurally unrelated inhibitors (kb NB 142-70 and CRT 0066101) induced a significant delay in metaphase to anaphase transition time. PKD1 inhibition during mitosis also produced the appearance of abnormal spindles, defects in chromosome alignment, and segregation as well as apoptosis. Thus, these observations indicate that PKD1 activity is associated with mitosis regulation.  相似文献   
25.
Botrytis cinerea is a phytopathogenic fungus causing disease in a substantial number of economically important crops. In an attempt to identify putative fungal virulence factors, the two-dimensional gel electrophoresis (2-DE) protein profile from two B. cinerea strains differing in virulence and toxin production were compared. Protein extracts from fungal mycelium obtained by tissue homogenization were analyzed. The mycelial 2-DE protein profile revealed the existence of qualitative and quantitative differences between the analyzed strains. The lack of genomic data from B. cinerea required the use of peptide fragmentation data from MALDI-TOF/TOF and ESI ion trap for protein identification, resulting in the identification of 27 protein spots. A significant number of spots were identified as malate dehydrogenase (MDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The different expression patterns revealed by some of the identified proteins could be ascribed to differences in virulence between strains. Our results indicate that proteomic analysis are becoming an important tool to be used as a starting point for identifying new pathogenicity factors, therapeutic targets and for basic research on this plant pathogen in the postgenomic era.  相似文献   
26.
A 5.6 kb DNA fragment from the fungus Phycomyces blakesleeanus has been cloned and sequenced. The fragment contains a gene that probably codes for the enzyme acetyl-coenzyme A synthetase (facA). The amino acid sequence deduced for the P. blakesleeanns protein is highly homologous to those of acetyl-coA-synthetases from other organisms. When placed under the control of a constitutive promoter from Aspergillus nidulans, the cloned gene complemented a facA mutation of this organism. In P. blakesleeanns, the expression of facA is induced by acetate.  相似文献   
27.
28.
This study examines age‐dependent metabolic‐inflammatory axis in primary astrocytes isolated from brain cortices of 7‐, 13‐, and 18‐month‐old Sprague–Dawley male rats. Astrocytes showed an age‐dependent increase in mitochondrial oxidative metabolism respiring on glucose and/or pyruvate substrates; this increase in mitochondrial oxidative metabolism was accompanied by increases in COX3/18SrDNA values, thus suggesting an enhanced mitochondrial biogenesis. Enhanced mitochondrial respiration in astrocytes limits the substrate supply from astrocytes to neurons; this may be viewed as an adaptive mechanism to altered cellular inflammatory–redox environment with age. These metabolic changes were associated with an age‐dependent increase in hydrogen peroxide generation (largely ascribed to an enhanced expression of NOX2) and NFκB signaling in the cytosol as well as its translocation to the nucleus. Astrocytes also displayed augmented responses with age to inflammatory cytokines, IL‐1β, and TNFα. Activation of NFκB signaling resulted in increased expression of nitric oxide synthase 2 (inducible nitric oxide synthase), leading to elevated nitric oxide production. IL‐1β and TNFα treatment stimulated mitochondrial oxidative metabolism and mitochondrial biogenesis in astrocytes. It may be surmised that increased mitochondrial aerobic metabolism and inflammatory responses are interconnected and support the functionality switch of astrocytes, from neurotrophic to neurotoxic with age.  相似文献   
29.
Endocytic internalization of the multidrug resistance-associated protein 2 (Mrp2) was previously suggested to be involved in estradiol-17beta-D-glucuronide (E217G)-induced cholestasis. Here we evaluated in the rat whether a similar phenomenon occurs with the bile salt export pump (Bsep) and the ability of DBcAMP to prevent it. E217G (15 micromol/kg i.v.) impaired bile salt (BS) output and induced Bsep internalization, as assessed by confocal microscopy and Western blotting. Neither cholestasis nor Bsep internalization occurred in TR- rats lacking Mrp2. DBcAMP (20 micromol/kg i.v.) partially prevented the decrease in bile flow and BS output and substantially prevented E217G-induced Bsep internalization. In hepatocyte couplets, E217G (50 microM) diminished canalicular accumulation of a fluorescent BS and decreased Bsep-associated fluorescence in the canalicular membrane; DBcAMP (10 microM) fully prevented both effects. In conclusion, our results suggest that changes in Bsep localization are involved in E217G-induced impairment of bile flow and BS transport and that DBcAMP prevents this effect by stimulating insertion of canalicular transporter-containing vesicles. Mrp2 is required for E217G to induce its harmful effect.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号