首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2547篇
  免费   182篇
  2729篇
  2023年   16篇
  2022年   22篇
  2021年   38篇
  2020年   40篇
  2019年   40篇
  2018年   35篇
  2017年   35篇
  2016年   82篇
  2015年   138篇
  2014年   152篇
  2013年   177篇
  2012年   195篇
  2011年   214篇
  2010年   127篇
  2009年   114篇
  2008年   170篇
  2007年   161篇
  2006年   140篇
  2005年   147篇
  2004年   137篇
  2003年   104篇
  2002年   114篇
  2001年   20篇
  2000年   18篇
  1999年   18篇
  1998年   29篇
  1997年   18篇
  1996年   13篇
  1995年   15篇
  1994年   16篇
  1993年   17篇
  1992年   12篇
  1991年   15篇
  1990年   6篇
  1989年   7篇
  1988年   7篇
  1987年   6篇
  1985年   7篇
  1984年   11篇
  1983年   7篇
  1982年   10篇
  1981年   13篇
  1980年   8篇
  1979年   7篇
  1978年   5篇
  1977年   10篇
  1976年   5篇
  1975年   4篇
  1973年   5篇
  1971年   5篇
排序方式: 共有2729条查询结果,搜索用时 15 毫秒
71.
The adaptation of translocated organisms to a new environment in the first years after their release is crucial in translocation programs because it may affect survival and reproductive success. Therefore, identifying the factors determining resource selection by the relocated animals is essential to improve the planning and the outcome of such programs. Using data collected in 2006–2009 in the framework of a restocking program, we studied the temporal variation of habitat selection in 14 translocated Alpine ibex (Capra ibex) during the year of their release and the following 3 years. We hypothesized a progressive adaptation of the translocated individuals, highlighted by a gradual decrease in the dissimilarities between translocated and resident individuals in ecological characteristics and social behavior. We tested the differences in habitat selection and home range size between the translocated and resident individuals and compared the spatial overlap between the groups. As expected, the dissimilarities decreased annually. The translocated and resident ibex almost immediately selected the same habitat resources, but the translocated individuals required 3 years to become fully socially assimilated. Our results indicated that habitat selection by gregarious species in a new environment is primarily driven by specific ecological requirements and that sociality plays a significant role. The translocated individuals tended to colonize areas already occupied by residents, either to fulfill social requirements and/or because the location of resident individuals may indicate high-quality habitat. This pattern of behavior must be considered in the planning of translocation programs because habitat selection can affect the outcomes of the programs. © 2013 The Wildlife Society.  相似文献   
72.
The effect of long-term (8 years) compost treatments (compost or compost plus mineral fertilizer) on genetic structure of bacterial and fungal populations in both bulk soil and rhizosphere of grapevine (Vitis vinifera) was analyzed in respect to a control constituted by the soil treated with mineral fertilization. Soils were sampled in early summer (July), mid-summer (August), and before harvest (October). Bacterial and fungal populations were characterized by genetic fingerprints generated by the application of 16S rDNA and ITS rDNA Multiplex Terminal Fragment Length Polymorphism (M-TRFLP) technique. Compost induced no significant differences at any time on microbial communities from bulk soil samples, whereas seasonal variations significantly affected both bacterial and fungal populations as indicated by the Multi Dimensional Scaling (MDS) ordination method of the M-TRFLPs results. MDS analysis of grapevine rhizosphere M-TRFLPs showed that temporal separation was significant for the bacterial population only. Results suggested that soil microbial populations in vineyard productive ecosystems may be sensitive to environmental changes induced by seasonal variations and show a certain degree of resilience to different agricultural practices.  相似文献   
73.
Ebola, a fatal virus in humans and non-human primates, has no Food and Drug Administration-approved vaccines or therapeutics. The virus from the Filoviridae family causes hemorrhagic fever, which rapidly progresses and in some cases has a fatality rate near 90%. The Ebola genome encodes seven genes, the most abundantly expressed of which is viral protein 40 (VP40), the major Ebola matrix protein that regulates assembly and egress of the virus. It is well established that VP40 assembles on the inner leaflet of the plasma membrane; however, the mechanistic details of plasma membrane association by VP40 are not well understood. In this study, we used an array of biophysical experiments and cellular assays along with mutagenesis of VP40 to investigate the role of membrane penetration in VP40 assembly and egress. Here we demonstrate that VP40 is able to penetrate specifically into the plasma membrane through an interface enriched in hydrophobic residues in its C-terminal domain. Mutagenesis of this hydrophobic region consisting of Leu213, Ile293, Leu295, and Val298 demonstrated that membrane penetration is critical to plasma membrane localization, VP40 oligomerization, and viral particle egress. Taken together, VP40 membrane penetration is an important step in the plasma membrane localization of the matrix protein where oligomerization and budding are defective in the absence of key hydrophobic interactions with the membrane.  相似文献   
74.
The TolC-like protein HgdD of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is part of multiple three-component “AB-D” systems spanning the inner and outer membranes and is involved in secretion of various compounds, including lipids, metabolites, antibiotics, and proteins. Several components of HgdD-dependent tripartite transport systems have been identified, but the diversity of inner membrane energizing systems is still unknown. Here we identified six putative resistance-nodulation-cell division (RND) type factors. Four of them are expressed during late exponential and stationary growth phase under normal growth conditions, whereas the other two are induced upon incubation with erythromycin or ethidium bromide. The constitutively expressed RND component Alr4267 has an atypical predicted topology, and a mutant strain (I-alr4267) shows a reduction in the content of monogalactosyldiacylglycerol as well as an altered filament shape. An insertion mutant of the ethidium bromide-induced all7631 did not show any significant phenotypic alteration under the conditions tested. Mutants of the constitutively expressed all3143 and alr1656 exhibited a Fox phenotype. The phenotype of the insertion mutant I-all3143 parallels that of the I-hgdD mutant with respect to antibiotic sensitivity, lipid profile, and ethidium efflux. In addition, expression of the RND genes all3143 and all3144 partially complements the capability of Escherichia coli ΔacrAB to transport ethidium. We postulate that the RND transporter All3143 and the predicted membrane fusion protein All3144, as homologs of E. coli AcrB and AcrA, respectively, are major players for antibiotic resistance in Anabaena sp. PCC 7120.  相似文献   
75.
Mitochondrial β-barrel proteins fulfill central functions in the outer membrane like metabolite exchange catalyzed by the voltage-dependent anion channel (VDAC) and protein biogenesis by the central components of the preprotein translocase of the outer membrane (Tom40) or of the sorting and assembly machinery (Sam50). The mitochondrial division and morphology protein Mdm10 is another essential outer membrane protein with proposed β-barrel fold, which has so far only been found in Fungi. Mdm10 is part of the endoplasmic reticulum mitochondria encounter structure (ERMES), which tethers the ER to mitochondria and associates with the SAM complex. In here, we provide evidence that Mdm10 phylogenetically belongs to the VDAC/Tom40 superfamily. Contrary to Tom40 and VDAC, Mdm10 exposes long loops towards both sides of the membrane. Analyses of single loop deletion mutants of Mdm10 in the yeast Saccharomyces cerevisiae reveal that the loops are dispensable for Mdm10 function. Sequences similar to fungal Mdm10 can be found in species from Excavates to Fungi, but neither in Metazoa nor in plants. Strikingly, the presence of Mdm10 coincides with the appearance of the other ERMES components. Mdm10's presence in both unikonts and bikonts indicates an introduction at an early time point in eukaryotic evolution.  相似文献   
76.
Actin dynamics is important in determining cell shape, tension, and migration. Methods such as fluorescent speckle microscopy and spatial temporal image correlation spectroscopy have been used to capture high-resolution actin turnover dynamics within cells in two dimensions. However, these methods are not directly applicable in 3D due to lower resolution and poor contrast. Here, we propose to capture actin flow in 3D with high spatial-temporal resolution by combining nanoscale precise imaging by rapid beam oscillation and fluctuation spectroscopy techniques. To measure the actin flow along cell protrusions in cell expressing actin-eGFP cultured in a type I collagen matrix, the laser was orbited around the protrusion and its trajectory was modulated in a clover-shaped pattern perpendicularly to the protrusion. Orbits were also alternated at two positions closely spaced along the protrusion axis. The pair cross-correlation function was applied to the fluorescence fluctuation from these two positions to capture the flow of actin. Measurements done on nonmoving cellular protrusion tips showed no pair-correlation at two orbital positions indicating a lack of flow of F-actin bundles. However, in some protrusions, the pair-correlation approach revealed directional flow of F-actin bundles near the protrusion surface with flow rates in the range of ∼1 μm/min, comparable to results in two dimensions using fluorescent speckle microscopy. Furthermore, we found that the actin flow rate is related to the distance to the protrusion tip. We also observed collagen deformation by concomitantly detecting collagen fibers with reflectance detection during these actin motions. The implementation of the nanoscale precise imaging by rapid beam oscillation method with a cloverleaf-shaped trajectory in conjunction with the pair cross-correlation function method provides a quantitative way of capturing dynamic flows and organization of proteins during cell migration in 3D in conditions of poor contrast.  相似文献   
77.
Antimicrobial peptides are an important component of innate immunity and have generated considerable interest as a new potential class of natural antibiotics. The biological activity of antimicrobial peptides is strongly influenced by peptide–membrane interactions. Human Neutrophil Peptide 1 (HNP-1) is a 30 aminoacid peptide, belonging to the class of α-defensins. Many biophysical studies have been performed on this peptide to define its mechanism of action. Combining spectroscopic and thermodynamic analysis, insights on the interaction of the α-defensin with POPE:POPG:CL negative charged bilayers are given. The binding states of the peptide below and above the threshold concentration have been analyzed showing that the interaction with lipid bilayers is dependent by peptide concentration. These novel results that indicate how affinity and biological activities of natural antibiotics are depending by their concentration, might open new way of investigation of the antimicrobial mode of action.  相似文献   
78.
79.
Bark beetles (Curculionidae: Scolytinae) are major cause of woody plants death in the world. They colonize the stem and other parts of trees recognizing host-produced specific compounds (kairomones) and insect pheromones. Bark beetle's antennae and alimentary canal participate in the host selection identifying chemical compounds produced by trees and insects, and also in the metabolism and detoxification of these compounds. The red turpentine beetle (RTB), Dendroctonus valens LeConte, is an unaggressive species that colonize > 40 pine species (Pinaceae) in North and Central America. Several studies suggest that bark beetle cytochrome P450 enzymes are involved in monoterpene oxidation. In this study we identified by means of PCR, cloning, sequencing, and bioinformatic analysis, eleven full-length genes: five CYP4, four CYP6, and two CYP9 in the antennae and gut region of RTB, after stimulation with vapors of monoterpenes: (±)-α-pinene, (R)-(+)-α-pinene, (S)-(?)-β-pinene, (S)-(?)-α-pinene and (+)-3-carene; pine trees volatiles used by RTB as kairomones. The recovered cDNA of these genes vary from 1.5 kb to 1.8 kb and the open frame encodes from 496 to 562 amino acid proteins. The bioinformatic analysis suggests that the majority of P450 proteins encoded by these genes are membrane anchored in the endoplasmic reticulum. RT-qPCR assays showed differential expression of all CYP genes between male and female. The gene expression was dependent of monoterpenes and exposure time, with some of them sex, antennae and gut region specific. Significant differences among monoterpenes, gut region, antennae and exposure time were found. Our results suggest that some of these genes may be involved in the detoxification process of these compounds during tree colonization.  相似文献   
80.
As a continuation of previous research on a new series of potent and efficacious P-gp-dependent multidrug resistant (MDR) reversers with a N,N-bis(cyclohexanol)amine scaffold, we have designed and synthesized several analogs by modulation of the two aromatic moieties linked through ester functions to the N,N-bis(cyclohexanol)amine, aiming to optimize activity and to extend structure–activity relationships (SAR) within the series. This scaffold, when esterified with two different aromatic carboxylic acids, gives origin to four geometric isomers (cis/trans, trans/trans, cis/cis and trans/cis).The new compounds were tested on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay. Most of them resulted in being potent modulators of the extrusion pump P-gp, showing potency values ([I]0.5) in the submicromolar and nanomolar range. Of these, compounds 2b, 2c, 3d, 5ad and 6d, showed excellent efficacy with a αmax close to 1. Selected compounds (2d, 3a, 3b, 5ad) were further studied to evaluate their doxorubicin cytotoxicity potentiation (RF) on doxorubicin-resistant erythroleukemia K562 cells and were found able to enhance significantly doxorubicin cytotoxicity on K562/DOX cells.The results of both pirarubicin uptake and the cytotoxicity assay, indicate that the new compounds of the series are potent P-gp-mediated MDR reversers. They present a structure with a mix of flexible and rigid moieties, a property that seems critical to allow the molecules to choose the most productive of the several binding modes possible in the transporter recognition site.In particular, compounds 5c and 5d, similar to the already reported analogous isomers 1c and 1d,29 are potent and efficacious modulators of P-gp-dependent MDR and may be promising leads for the development of MDR-reversal drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号