首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2645篇
  免费   185篇
  2023年   16篇
  2022年   22篇
  2021年   39篇
  2020年   41篇
  2019年   40篇
  2018年   35篇
  2017年   35篇
  2016年   83篇
  2015年   141篇
  2014年   153篇
  2013年   182篇
  2012年   198篇
  2011年   217篇
  2010年   129篇
  2009年   116篇
  2008年   171篇
  2007年   164篇
  2006年   142篇
  2005年   150篇
  2004年   142篇
  2003年   113篇
  2002年   120篇
  2001年   22篇
  2000年   22篇
  1999年   23篇
  1998年   32篇
  1997年   18篇
  1996年   14篇
  1995年   22篇
  1994年   25篇
  1993年   19篇
  1992年   12篇
  1991年   17篇
  1990年   6篇
  1989年   9篇
  1988年   9篇
  1987年   6篇
  1985年   8篇
  1984年   12篇
  1983年   8篇
  1982年   11篇
  1981年   13篇
  1980年   8篇
  1979年   7篇
  1978年   5篇
  1977年   11篇
  1976年   8篇
  1973年   5篇
  1971年   5篇
  1967年   4篇
排序方式: 共有2830条查询结果,搜索用时 15 毫秒
961.
Root exudates: the hidden part of plant defense   总被引:5,自引:0,他引:5  
  相似文献   
962.

Background

Acute exacerbations of COPD (AECOPD) are common and strongly influence disease severity and relative healthcare costs. Vitamin D deficiency is frequent among COPD patients and its contributory role in disease exacerbations is widely debated. Our aim was to assess the relationship of serum vitamin D levels with COPD severity and AECOPD.

Methods

Serum vitamin D (25-hydroxyvitamin D) levels were measured in 97 COPD patients and related to lung function, comorbidities, FEV1 decline, AECOPD and hospital admission during the previous year.

Results

Most patients (96%) had vitamin D deficiency, which was severe in 35 (36%). No significant relationship was found between vitamin D and FEV1 or annual FEV1 decline. No difference between patients with and without severe vitamin D deficiency was found in age, gender, BMI, smoking history, lung function, and comorbidities, apart from osteoporosis (60.9% in severe deficiency vs 22.7%, p = 0.001). In multiple logistic regression models, severe deficiency was independently associated with AECOPD [adjusted odds ratios (aOR) of 30.5 (95% CI 5.55, 168), p < 0.001] and hospitalization [aOR 3.83 (95% CI 1.29, 11.4), p = 0.02]. The odds ratio of being a frequent exacerbator if having severe vitamin D deficiency was 18.1 (95% CI 4.98, 65.8) (p < 0.001), while that of hospitalization was 4.57 (95% CI 1.83, 11.4) (p = 0.001).

Conclusions

In COPD patients severe vitamin D deficiency was related to more frequent disease exacerbations and hospitalization during the year previous to the measurement of vitamin D. This association was independent of patients’ characteristics and comorbidities.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0131-0) contains supplementary material, which is available to authorized users.  相似文献   
963.

Background

Pantoea ananatis is found in a wide range of natural environments, including water, soil, as part of the epi- and endophytic flora of various plant hosts, and in the insect gut. Some strains have proven effective as biological control agents and plant-growth promoters, while other strains have been implicated in diseases of a broad range of plant hosts and humans. By analysing the pan-genome of eight sequenced P. ananatis strains isolated from different sources we identified factors potentially underlying its ability to colonize and interact with hosts in both the plant and animal Kingdoms.

Results

The pan-genome of the eight compared P. ananatis strains consisted of a core genome comprised of 3,876 protein coding sequences (CDSs) and a sizeable accessory genome consisting of 1,690 CDSs. We estimate that ~106 unique CDSs would be added to the pan-genome with each additional P. ananatis genome sequenced in the future. The accessory fraction is derived mainly from integrated prophages and codes mostly for proteins of unknown function. Comparison of the translated CDSs on the P. ananatis pan-genome with the proteins encoded on all sequenced bacterial genomes currently available revealed that P. ananatis carries a number of CDSs with orthologs restricted to bacteria associated with distinct hosts, namely plant-, animal- and insect-associated bacteria. These CDSs encode proteins with putative roles in transport and metabolism of carbohydrate and amino acid substrates, adherence to host tissues, protection against plant and animal defense mechanisms and the biosynthesis of potential pathogenicity determinants including insecticidal peptides, phytotoxins and type VI secretion system effectors.

Conclusions

P. ananatis has an ‘open’ pan-genome typical of bacterial species that colonize several different environments. The pan-genome incorporates a large number of genes encoding proteins that may enable P. ananatis to colonize, persist in and potentially cause disease symptoms in a wide range of plant and animal hosts.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-404) contains supplementary material, which is available to authorized users.  相似文献   
964.
Patterning of numerous features of plants depends on transduction of the auxin signal. Auxin signaling is mediated by several pathways, the best understood of which relies on the function of the MONOPTEROS (MP) gene. Seven mp mutant alleles have been described in the widely used Columbia background of Arabidopsis: two extensively characterized and five only partially characterized. One of these five mp alleles appears to be extinct and thus unavailable for analysis. We show that two of the four remaining, partially characterized mp alleles reported to be in the Columbia background are in fact not in this background. We extend characterization of the remaining two Columbia alleles of mp, and we identify and characterize four new alleles of mp in the Columbia background, among which the first low‐expression allele of mp and the strongest Columbia allele of mp. These genetic resources provide the research community with new experimental opportunities for insight into the function of MP‐dependent auxin signaling in plant development. genesis 52:127–133. © 2013 Wiley Periodicals, Inc.  相似文献   
965.
A particle-rich cytoplasmic structure (PaCS) concentrating ubiquitin–proteasome system (UPS) components and barrel-like particles in clear, cytoskeleton- and organelle-free areas has recently been described in some neoplasms and in genetic or infectious diseases at risk of neoplasia. Ultrastructurally similar particulate cytoplasmic structures, interpreted as glycogen deposits, have previously been reported in clear-cell neoplasms and some fetal tissues. It remains to be investigated whether the two structures are the same, colocalize UPS components and polysaccharides, and have a role in highly proliferative cells such as fetal and neoplastic cells. We used immunogold electron microscopy and confocal immunofluorescence microscopy to examine human and mouse fetal tissues and human neoplasms. Fetal and neoplastic cells both showed colocalization of polyubiquitinated proteins, 19S and 20S proteasomes, and polysaccharides, both glycogen and chondroitin sulfate, inside cytoplasmic structures showing all distinctive features of PaCSs. Poorly demarcated and/or hybrid (ribosomes admixed) UPS- and glycogen-enriched areas, likely stages in PaCS development, were also seen in some fetal cells, with special reference to those, like primary alveolar pulmonary cells or pancreatic centroacinar cells, having a crucial role in organogenesis. UPS- and glycogen-rich PaCSs developed extensively in clear-cell neoplasms of the kidney, ovary, pancreas, and other organs, as well as, in infantile, development-related tumors replicating fetal patterns, such as choroid plexus papilloma. UPS-mediated, ATP-dependent proteolysis and its potential energy source, glycogen metabolism, may have a crucial, synergic role in embryo-/organogenesis and carcinogenesis.  相似文献   
966.
Copper–zinc superoxide dismutase 1 (SOD1) is present in the protein aggregates deposited in motor neurons of amyotrophic lateral sclerosis (ALS) patients. ALS is a neurodegenerative disease that can be either sporadic (ca. 90 %) or familial (fALS). The most widely studied forms of fALS are caused by mutations in the sequence of SOD1. Ex mortuo SOD1 aggregates are usually found to be amorphous. In vitro SOD1, in its immature reduced and apo state, forms fibrillar aggregates. Previous literature data have suggested that a monomeric SOD1 construct, lacking loops IV and VII, (apoSODΔIV–VII), shares the same fibrillization properties of apoSOD1, both proteins having the common structural feature of the central β-barrel. In this work, we show that structural information can be obtained at a site-specific level from solid-state NMR. The residues that are sequentially assignable are found to be located at the putative nucleation site for fibrillar species formation in apoSOD, as detected by other experimental techniques.  相似文献   
967.
968.
With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40''s diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein''s structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model.  相似文献   
969.

Background

Histone demethylases (HDMs) have a prominent role in epigenetic regulation and are emerging as potential therapeutic cancer targets. The search for small molecules able to inhibit HDMs in vivo is very active but at the present few compounds were found to be specific for defined classes of these enzymes.

Methodology/Principal Findings

In order to discover inhibitors specific for H3K4 histone demethylation we set up a screening system which tests the effects of candidate small molecule inhibitors on a S.cerevisiae strain which requires Jhd2 demethylase activity to efficiently grow in the presence of rapamycin. In order to validate the system we screened a library of 45 structurally different compounds designed as competitive inhibitors of α -ketoglutarate (α-KG) cofactor of the enzyme, and found that one of them inhibited Jhd2 activity in vitro and in vivo. The same compound effectively inhibits human Jumonji AT-Rich Interactive Domain (JARID) 1B and 1D in vitro and increases H3K4 tri-methylation in HeLa cell nuclear extracts (NEs). When added in vivo to HeLa cells, the compound leads to an increase of tri-methyl-H3K4 (H3K4me3) but does not affect H3K9 tri-methylation. We describe the cytostatic and toxic effects of the compound on HeLa cells at concentrations compatible with its inhibitory activity.

Conclusions/Significance

Our screening system is proved to be very useful in testing putative H3K4-specific HDM inhibitors for the capacity of acting in vivo without significantly altering the activity of other important 2-oxoglutarate oxygenases.  相似文献   
970.
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the ‘core-set’ of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号