首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2533篇
  免费   181篇
  2714篇
  2023年   16篇
  2022年   22篇
  2021年   38篇
  2020年   40篇
  2019年   40篇
  2018年   35篇
  2017年   35篇
  2016年   82篇
  2015年   138篇
  2014年   152篇
  2013年   177篇
  2012年   195篇
  2011年   213篇
  2010年   125篇
  2009年   114篇
  2008年   168篇
  2007年   161篇
  2006年   139篇
  2005年   146篇
  2004年   138篇
  2003年   102篇
  2002年   113篇
  2001年   18篇
  2000年   15篇
  1999年   17篇
  1998年   29篇
  1997年   18篇
  1996年   13篇
  1995年   15篇
  1994年   16篇
  1993年   17篇
  1992年   13篇
  1991年   15篇
  1990年   6篇
  1989年   7篇
  1988年   7篇
  1987年   6篇
  1985年   7篇
  1984年   11篇
  1983年   7篇
  1982年   10篇
  1981年   13篇
  1980年   8篇
  1979年   7篇
  1978年   5篇
  1977年   10篇
  1976年   5篇
  1975年   4篇
  1973年   5篇
  1971年   5篇
排序方式: 共有2714条查询结果,搜索用时 25 毫秒
91.
As a continuation of previous research on a new series of potent and efficacious P-gp-dependent multidrug resistant (MDR) reversers with a N,N-bis(cyclohexanol)amine scaffold, we have designed and synthesized several analogs by modulation of the two aromatic moieties linked through ester functions to the N,N-bis(cyclohexanol)amine, aiming to optimize activity and to extend structure–activity relationships (SAR) within the series. This scaffold, when esterified with two different aromatic carboxylic acids, gives origin to four geometric isomers (cis/trans, trans/trans, cis/cis and trans/cis).The new compounds were tested on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay. Most of them resulted in being potent modulators of the extrusion pump P-gp, showing potency values ([I]0.5) in the submicromolar and nanomolar range. Of these, compounds 2b, 2c, 3d, 5ad and 6d, showed excellent efficacy with a αmax close to 1. Selected compounds (2d, 3a, 3b, 5ad) were further studied to evaluate their doxorubicin cytotoxicity potentiation (RF) on doxorubicin-resistant erythroleukemia K562 cells and were found able to enhance significantly doxorubicin cytotoxicity on K562/DOX cells.The results of both pirarubicin uptake and the cytotoxicity assay, indicate that the new compounds of the series are potent P-gp-mediated MDR reversers. They present a structure with a mix of flexible and rigid moieties, a property that seems critical to allow the molecules to choose the most productive of the several binding modes possible in the transporter recognition site.In particular, compounds 5c and 5d, similar to the already reported analogous isomers 1c and 1d,29 are potent and efficacious modulators of P-gp-dependent MDR and may be promising leads for the development of MDR-reversal drugs.  相似文献   
92.
Stem slices cut from micropropagated cuttings of apple rootstock M26 were cultured in the presence of indole-3-butyric acid (IBA) plus N,N-bis-(2,3-methylenedioxyphenyl)urea or N,N-bis-(3,4-methylenedioxyphenyl)urea, to verify if there was an interaction between them in enhancing root formation. The N,N-bis-(methylenedioxyphenyl)ureas were supplemented after, before and in the simultaneous presence of auxin. Our data demonstrate that only the simultaneous presence of auxin and N,N-bis-(methylenedioxyphenyl)ureas in the culture medium enhanced root formation on M26 stem slices. The percentage of rooted slices obtained in the presence of the mixtures was significantly different from that obtained in the presence of low auxin concentration alone (1µM). Moreover both the percentage of rooted slices and the number of roots per slice obtained in these culture conditions was not significantly different to that of the optimal auxinic treatment in which the auxin concentration was threefold higher.  相似文献   
93.
Enrico Cabib 《Eukaryotic cell》2009,8(11):1626-1636
Previous work, using solubilization of yeast cell walls by carboxymethylation, before or after digestion with β(1-3)- or β(1-6)glucanase, followed by size chromatography, showed that the transglycosylases Crh1p and Crh2p/Utr2p were redundantly required for the attachment of chitin to β(1-6)glucan. With this technique, crh1Δ crh2Δ mutants still appeared to contain a substantial percentage of chitin linked to β(1-3)glucan. Two novel procedures have now been developed for the analysis of polysaccharide cross-links in the cell wall. One is based on the affinity of curdlan, a β(1-3)glucan, for β(1-3)glucan chains in carboxymethylated cell walls. The other consists of in situ deacetylation of cell wall chitin, generating chitosan, which can be extracted with acetic acid, either directly (free chitosan) or after digestion with different glucanases (bound chitosan). Both methodologies indicated that all of the chitin in crh1Δ crh2Δ strains is free. Reexamination of the previously used procedure revealed that the β(1-3)glucanase preparation used (zymolyase) is contaminated with a small amount of endochitinase, which caused erroneous results with the double mutant. After removing the chitinase from the zymolyase, all three procedures gave coincident results. Therefore, Crh1p and Crh2p catalyze the transfer of chitin to both β(1-3)- and β(1-6)glucan, and the biosynthetic mechanism for all chitin cross-links in the cell wall has been established.The fungal cell wall protects the cell against internal turgor pressure and external mechanical injury. To fulfill these functions, it must be endowed with a resilient structure. Presumably, the cell wall strength is largely due to the cross-links that bind together its components, mainly polysaccharides, giving rise to a tightly knit mesh (6, 11-13). Interestingly, the cross-links must be created outside the plasma membrane, because most of the polysaccharides are extruded as they are synthesized at the membrane; therefore, they do not exist inside the cell. This posits a thermodynamic problem, because there are no obvious sources of energy in the periplasmic space. About 20 years ago we proposed that the free energy may come from existing bonds in the polysaccharide chains and that the new cross-links may be originated by transglycosylation, thus creating a new linkage for each one that is broken (5).Ascertaining the mechanism of cross-link formation seemed a worthwhile endeavor, both because of the theoretical implications and because the cell wall is a proven target for antifungal compounds; therefore, more knowledge about its synthesis can be of practical interest. For this type of investigation to proceed, it was necessary to devise some method for the quantitative analysis of cell wall cross-links. We developed such a procedure for the evaluation of the proportion of cell wall chitin that is free or bound to β(1-3)- or β(1-6)glucan (4). In this methodology, chitin was specifically labeled in vivo with [14C]glucosamine; cell walls were isolated, and their proteins were eliminated by alkali treatment. The insoluble residue was solubilized by carboxymethylation and analyzed by size fractionation chromatography. By treating the cell walls with different glucanases before carboxymethylation and comparing the chromatographic profiles, we were able to determine the amount of chitin bound to the different glucans, as well as the fraction that was free (4). Armed with this procedure, we could now analyze the cell wall of different mutants that appeared to be candidates for cross-links defects. In this way we found that the two putative transglycosylases Crh1p and Crh2p were redundantly required for the formation of the chitin-β(1-6)glucan linkage. A double mutant crh1Δ crh2Δ had no chitin attached to β(1-6)glucan, although it still contained apparently normal amounts of chitin-β(1-3)glucan complex (7). Further work supported the notion that Crh1p and Crh2p function as transglycosylases, transferring portions of chitin chains to glucan (8). This confirmed our earlier hypothesis.With the initial intention of finding easier and faster methods, I devised two novel procedures for cell wall analysis. One is based on the affinity between β(1-3)glucan chains, the other on the conversion of chitin in situ into its deacetylated product, chitosan, followed by extraction of the chitosan with acetic acid before or after treatment with specific glucanases. With a wild-type strain, both procedures gave similar results to those of the carboxymethylation-chromatography technique. However, in the double mutant crh1Δ crh2Δ all of the chitin appeared to be free with both new methods. Further investigation showed that the older procedure led to erroneous results for the double mutant, because of the presence of a small amount of chitinase in the β(1-3)glucanase preparation used. After reconciling the results, I conclude that Crh1p and Crh2p are necessary for the formation of cross-links between chitin and either β(1-6) or β(1-3)glucan.  相似文献   
94.
The structural and functional consequences of engineering a positively charged Lys residue and replacing the natural heme with a heme-L-His derivative in the active site of sperm whale myoglobin (Mb) have been investigated. The main structural change caused by the distal T67K mutation appears to be mobilization of the propionate-7 group. Reconstitution of wild-type and T67K Mb with heme-L-His relaxes the protein fragment around the heme because it involves the loss of the interaction of one of the propionate groups which stabilize heme binding to the protein. This modification increases the accessibility of exogenous ligands or substrates to the active site. The catalytic activity of the reconstituted proteins in peroxidase-type reactions is thus significantly increased, particularly with T67K Mb. The T67K mutation slightly reduces the thermodynamic stability and the chemical stability of Mb during catalysis, but somewhat more marked effects are observed by cofactor reconstitution. Hydrogen peroxide, in fact, induces pseudo-peroxidase activity but also promotes oxidative damage of the protein. The mechanism of protein degradation involves two pathways, which depend on the evolution of radical species generated on protein residues by the Mb active species and on the reactivity of phenoxy radicals produced during turnover. Both protein oligomers and heme-protein cross-links have been detected upon inactivation.  相似文献   
95.
Fas and Fas ligand (FasL) are the main genes that control cell death in the immune system. Indeed, they are crucial for the regulation of T lymphocyte homeostasis because they can influence cell proliferation. A strong debate exists on the importance of Fas/FasL system during HIV infection, which is characterized by the loss of CD4+ T cells directly, or indirectly, caused by the virus. To investigate whether the genetic background of the host plays a role in the immunoreconstitution, we studied the influence of different Fas and FasL polymorphisms on CD4+ T lymphocyte count and plasma viral load following initiation of highly active antiretroviral therapy (HAART) in drug-naïve HIV+ patients. We studied 131 individuals, who were compared to 136 healthy donors. Statistical analysis was performed by using X 2 test, Fischer's Exact Test, and analysis for repeated measurements. The group of HIV+ patients had an unexpected lower frequency of FasLnt169 polymorphism (delT allele) than healthy controls (p=0.039). We then observed no significant differences in the immune reconstitution, in terms of CD4+ T cell increase, when the influence of single alleles of the gene Fas or FasL was considered. However, the combination of some polymorphisms of Fas or FasL significantly influenced CD4+ T cell production and viral load decrease, showing that these genes can play a role in the immunoreconstitution triggered by antiretroviral therapy.  相似文献   
96.
Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction, and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. Fluorescence Correlation Spectroscopy (FCS) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan Generalized Polarization (GP) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A-I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis and offer a methodological design suited to different biological systems.  相似文献   
97.
Bidirectional signaling triggered by interacting ephrinB receptors (EphB) and ephrinB ligands is crucial for development and function of the vascular and nervous systems. A signaling cascade triggered by this interaction involves activation of Src kinase and phosphorylation of ephrinB. The mechanism, however, by which EphB activates Src in the ephrinB-expressing cells is unknown. Here we show that EphB stimulates a metalloproteinase cleavage of ephrinB2, producing a carboxy-terminal fragment that is further processed by PS1/gamma-secretase to produce intracellular peptide ephrinB2/CTF2. This peptide binds Src and inhibits its association with inhibitory kinase Csk, allowing autophosphorylation of Src at residue tyr418. EphrinB2/CTF2-activated Src phosphorylates ephrinB2 and inhibits its processing by gamma-secretase. These data show that the PS1/gamma-secretase system controls Src activation and ephrinB phosphorylation by regulating production of Src activator ephrinB2/CTF2. Accordingly, gamma-secretase inhibitors prevented the EphB-induced sprouting of endothelial cells and the recruitment of Grb4 to ephrinB. PS1 FAD and gamma-secretase dominant-negative mutants inhibited the EphB-induced cleavage of ephrinB2 and Src autophosphorylation, raising the possibility that FAD mutants interfere with the functions of Src and ephrinB2 in the CNS.  相似文献   
98.
Several families of peptide toxins from cone snails affect voltage-gated sodium (Na(V)) channels: mu-conotoxins block the pore, delta-conotoxins inhibit channel inactivation, and muO-conotoxins inhibit Na(V) channels by an unknown mechanism. The only currently known muO-conotoxins MrVIA and MrVIB from Conus marmoreus were applied to cloned rat skeletal muscle (Na(V)1.4) and brain (Na(V)1.2) sodium channels in mammalian cells. A systematic domain-swapping strategy identified the C-terminal pore loop of domain-3 as the major determinant for Na(V)1.4 being more potently blocked than Na(V)1.2 channels. muO-conotoxins therefore show an interaction pattern with Na(V) channels that is clearly different from the related mu- and delta-conotoxins, indicative of a distinct molecular mechanism of channel inhibition.  相似文献   
99.
100.
Genetic variation in specific G-protein coupled receptors (GPCRs) is associated with a spectrum of respiratory disease predispositions and drug response phenotypes. Although certain GPCR gene variants can be disease-causing through the expression of inactive, overactive, or constitutively active receptor proteins, many more GPCR gene variants confer risk for potentially deleterious endophenotypes. Endophenotypes are traits, such as bronchiole hyperactivity, atopy, and aspirin intolerant asthma, which have a strong genetic component and are risk factors for a variety of more complex outcomes that may include disease states. GPCR genes implicated in asthma endophenotypes include variants of the cysteinyl leukotriene receptors (CYSLTR1 and CYSLTR2), and prostaglandin D2 receptors (PTGDR and CRTH2), thromboxane A2 receptor (TBXA2R), beta2-adrenergic receptor (ADRB2), chemokine receptor 5 (CCR5), and the G protein-coupled receptor associated with asthma (GPRA). This review of the contribution of variability in these genes places the contribution of the cysteinyl leukotriene system to respiratory endophenotypes in perspective. The genetic variant(s) of receptors that are associated with endophenotypes are discussed in the context of the extent to which they contribute to a disease phenotype or altered drug efficacy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号