首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   32篇
  468篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   9篇
  2017年   8篇
  2016年   12篇
  2015年   15篇
  2014年   30篇
  2013年   34篇
  2012年   37篇
  2011年   40篇
  2010年   24篇
  2009年   24篇
  2008年   32篇
  2007年   19篇
  2006年   20篇
  2005年   11篇
  2004年   27篇
  2003年   14篇
  2002年   9篇
  2001年   1篇
  2000年   2篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1991年   5篇
  1990年   10篇
  1989年   7篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   5篇
  1978年   3篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
  1966年   4篇
排序方式: 共有468条查询结果,搜索用时 187 毫秒
1.
The effects of two sulfhydryl compounds, glutathione (GSH) and N-acetylcysteine (NAC), on the cardiotoxicity of doxorubicin (DXR) were tested on in vitro and in vivo models. DXR was administered to rats as 4 weekly i.v. doses of 3mg/kg. GSH (1.5 mmoles/kg), given i.v. 10 min before and 1 hr after DXR, was found to prevent the development of the delayed cardiotoxic effects of DXR, as assessed by electrocardiographic and mechanical parameters, as well as by histological examination of left ventricular preparations. In contrast, equimolar oral doses of NAC (1 hr before and 2hrs after DXR) were found to be ineffective. Both GSH and NAC prevented the negative inotropic effect produced by DXR on isolated rat atria. A good correlation exists between the cardioprotective effects of the two agents and their ability to enhance the non-protein sulfhydryl group content of the myocardium. Differences observed in vivo between GSH and NAC might be accounted for by pharmacokinetic factors.  相似文献   
2.
The reactive oxygen species that are generated by mitochondrial respiration, including hydrogen peroxide (H2O2), are potent inducers of oxidative damage and mediators of ageing. It is not clear, however, whether oxidative stress is the result of a genetic programme or the by-product of physiological processes. Recent findings demonstrate that a fraction of mitochondrial H2O2, produced by a specialized enzyme as a signalling molecule in the pathway of apoptosis, induces intracellular oxidative stress and accelerates ageing. We propose that genes that control H2O2 production are selected determinants of lifespan.  相似文献   
3.
4.
cGMP and db-cGMP administered for 20–24 h to neonatal rat hepatocytes in primary culture stimulated their DNA synthesis and proliferation only at concentrations higher than the physiological one, whereas at concentrations equal to or lower than the physiological concentration they were ineffective or inhibitory for both activities. Induction of DNA synthesis to be effected by cGMP required 15 h of treatment, preceded, however, by inhibition of the same process between the 6th and the 14th hour of exposure. In contrast, cAMP and db-cAMP stimulated the flow of cultivated hepatocytes into the S and M stages of their mitotic cycle when administered at very wide concentration range, including the physiological for cAMP and the sub-physiological for db-cAMP. cAMP was effective after 12–14 h of treatment. Equimolar mixtures of cGMP with cAMP and of db-cGMP with db-cAMP also stimulated the proliferative activity of primary hepatocytes, but only at very low doses, which induced a first peak of DNA synthesis between the 2nd and the 6th hour of treatment and a second peak at about the 18th hour. These actions of the cyclic compounds, employed singly or in equimolar combination, were shown to be specific, since they could not be reproduced by their main metabolites. The present results strengthen the view that cAMP plays a pre-eminent role in the positive regulation of hepatocyte proliferation. Contrary to the postulate of the dualistic doctrine, cGMP by itself is not proliferogenic in the physiological range; in fact, cGMP acts as an ancillary, possibly dispensable, compound whose physiological role may be to help, in cooperation with cAMP, liver cells to cross the G1/S boundary of their growth-division cycle.  相似文献   
5.
Alzheimer disease (AD) is a neurodegenerative disorder characterized by progressive decline of cognitive function that represents one of the most dramatic medical challenges for the aging population. Aβ peptides, generated by processing of the Amyloid Precursor Protein (APP), are thought to play a central role in the pathogenesis of AD. However, the network of physical and functional interactions that may affect their production and deposition is still poorly understood. The use of a bioinformatic approach based on human/mouse conserved coexpression allowed us to identify a group of genes that display an expression profile strongly correlated with APP. Among the most prominent candidates, we investigated whether the collagen chaperone HSP47 could be functionally correlated with APP. We found that HSP47 accumulates in amyloid deposits of two different mouse models and of some AD patients, is capable to physically interact with APP and can be relocalized by APP overexpression. Notably, we found that it is possible to reduce the levels of secreted Aβ peptides by reducing the expression of HSP47 or by interfering with its activity via chemical inhibitors. Our data unveil HSP47 as a new functional interactor of APP and imply it as a potential target for preventing the formation and/or growth amyloid plaques.  相似文献   
6.
7.
Two acetylcholinesterase (AChE) inhibitors structurally related to Tacrine, 6-methoxytacrine (1a) and 9-heptylamino-6-methoxytacrine (1b), and their interaction with Electrophorus Electricus AChE were investigated. The complete assignment of the 1H and 13C NMR spectra of 1a and 1b was performed by mono-dimensional and homo- and hetero-correlated two-dimensional NMR experiments. This study was undertaken to elucidate the interaction modes between AChE and 1a and 1b in solution, using NMR. The interaction between the two inhibitors and AChE was studied by the analysis of the motional parameters non-selective and selective spin-lattice relaxation times, thereby allowing the motional state of 1a and 1b, both free and bound with AChE, to be defined. The relaxation data pointed out the ligands molecular moiety most involved in the binding with AChE. The relevant ligand/enzyme interaction constants were also evaluated for both compounds and resulted to be 859 and 5412M(-1) for 1a and1b, respectively.  相似文献   
8.
Phenol hydroxylase (PH) from Acinetobacter radioresistens S13 represents an example of multicomponent aromatic ring monooxygenase made up of three moieties: a reductase (PHR), an oxygenase (PHO) and a regulative component (PHI). The function of the oxygenase component (PHO), here characterized for the first time, is to bind molecular oxygen and catalyse the mono-hydroxylation of substrates (phenol, and with less efficiency, chloro- and methyl-phenol and naphthol). PHO was purified from extracts of A. radioresistens S13 cells and shown to be a dimer of 206 kDa. Each monomer is composed by three subunits: alpha (54 kDa), beta (38 kDa) and gamma (11 kDa). The gene encoding PHO alpha (named mopN) was cloned and sequenced and the corresponding amino acid sequence matched with that of functionally related oxygenases. By structural alignment with the catalytic subunits of methane monooxygenase (MMO) and alkene monooxygenase, we propose that PHO alpha contains the enzyme active site, harbouring a dinuclear iron centre Fe-O-Fe, as also suggested by spectral analysis. Conserved hydrophobic amino acids known to define the substrate recognition pocket, are also present in the alpha-subunit. The prevalence of alpha-helices (99.6%) as studied by CD confirmed the hypothized structural homologies between PHO and MMO. Three parameters (optimum ionic strength, temperature and pH) that affect kinetics of the overall phenol hydroxylase reaction were further analyzed with a fixed optimal PHR/PHI/PHO ratio of 2/1/1. The highest level of activity was evaluated between 0.075 and 0.1 m of ionic strength, the temperature dependence showed a maximum of activity at 24 degrees C and finally the pH for optimal activity was determined to be 7.5.  相似文献   
9.
Liberibacter asiaticus is the prevalent causative pathogen of Huanglongbing or citrus greening disease, which has resulted in a devastating crisis in the citrus industry. A thorough understanding of this pathogen's physiology and mechanisms to control cell survival is critical in the identification of therapeutic targets. YbeY is a highly conserved bacterial RNase that has been implicated in multiple roles. In this study, we evaluated the biochemical characteristics of the L. asiaticus YbeY (CLIBASIA_01560) and assessed its potential as a target for antimicrobials. YbeYLas was characterized as an endoribonuclease with activity on 3′ and 5′ termini of 16S and 23S rRNAs, and the capacity to suppress the E. coli ΔybeY phenotype. We predicted the YbeYLas protein:ligand interface and subsequently identified a flavone compound, luteolin, as a selective inhibitor. Site-directed mutagenesis was subsequently used to identify key residues involved in the catalytic activity of YbeYLas. Further evaluation of naturally occurring flavonoids in citrus trees indicated that both flavones and flavonols had potent inhibitory effects on YbeYLas. Luteolin was subsequently examined for efficacy against L. asiaticus in Huanglongbing-infected citrus trees, where a significant reduction in L. asiaticus gene expression was observed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号