首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   100篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   5篇
  2018年   9篇
  2017年   9篇
  2016年   11篇
  2015年   10篇
  2014年   15篇
  2013年   11篇
  2012年   14篇
  2011年   21篇
  2010年   17篇
  2009年   21篇
  2008年   15篇
  2007年   16篇
  2006年   10篇
  2005年   9篇
  2004年   7篇
  2003年   6篇
  2002年   15篇
  2001年   3篇
  2000年   9篇
  1999年   8篇
  1998年   9篇
  1997年   4篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1977年   5篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
  1955年   1篇
  1951年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有331条查询结果,搜索用时 171 毫秒
91.
The mouse L-cell mutant gro29 is defective for egress of herpes simplex virus type 1 (HSV-1) virions and is significantly reduced in HSV-1 glycoprotein export (B. W. Banfield and F. Tufaro, J. Virol. 64:5716-5729, 1990). In this report, we demonstrate that pseudorabies virus (PRV), a distantly related alphaherpesvirus, shows a distinctive set of defects after infection of gro29 cells. Specifically, we identify defects in the rate and extent of viral glycoprotein export, infectious particle formation, plaque formation, and virus egress. The initial rate of viral glycoprotein synthesis was unaffected in gro29 cells, but the extent of export from the endoplasmic reticulum to the Golgi apparatus was impaired and export through the Golgi apparatus became essentially blocked late in infection. Moreover, by using a secreted variant of a viral membrane protein, we found that export from the Golgi apparatus out of the cell was also defective in gro29 cells. PRV does not form plaques on gro29 monolayers. A low level of infectious virus is formed and released early after infection, but further virus egress is blocked. Taken together, these observations suggest that the gro29 phenotype involves either multiple proteins or a single protein used at multiple steps in viral glycoprotein export and virus egress from cells. Moreover, this host cell protein is required by both HSV and PRV for efficient propagation in infected cells.  相似文献   
92.
Neurotropic alphaherpesviruses have become popular tools for transynaptic analysis of neural circuitry. It has also been demonstrated that coinfection with two viruses expressing unique reporters can be used to define more complicated circuitry. However, the coinfection studies reported to date have employed nonisogenic strains that differ in their invasive properties. In the present investigation we used two antigenically distinct recombinants of the swine pathogen pseudorabies virus (PRV) in single and double infections of the rat central nervous system. Both viruses are derivatives of PRV-Bartha, a strain with reduced virulence that is widely used for circuit analysis. PRV-BaBlu expresses beta-galactosidase, and PRV-D expresses the PRV membrane protein gI, the gene for which is deleted in PRV-BaBlu. Antibodies to beta-galactosidase identify neurons infected with PRV-BaBlu, and antibodies monospecific for PRV gI identify neurons infected with PRV-D. The ability of these strains to establish coinfections in neurons was evaluated in visual and autonomic circuitry in which the parental virus has previously been characterized. The following conclusions can be drawn from these experiments. First, PRV-D is significantly more neuroinvasive than PRV-Bartha or PRV-BaBlu in the same circuitry. Second, PRV-D is more virulent than either PRV-Bartha or PRV-BaBlu, and PRV-BaBlu is less virulent than PRV-Bartha. Third, in every model examined, PRV-D and PRV-BaBlu coinfect some neurons, but single infections predominate. Fourth, prior infection with one virus renders neurons less permissive to infection by another virus. Fifth, prior infection by PRV-D is more effective than PRV-BaBlu in reducing invasion and spread of the second virus. Collectively, the data define important variables that must be considered in coinfection experiments and suggest that the most successful application of this approach would be accomplished by using isogenic strains of virus with equivalent virulence.  相似文献   
93.
A full-length clone of the 142-kb pseudorabies virus (PRV) genome was constructed as a stable F plasmid in Escherichia coli. The clone, pBecker1, was colinear with PRV-Becker genomic DNA, lacking detectable rearrangements, deletions, or inversions. The transfection of pBecker1 into susceptible eukaryotic cells resulted in productive viral infection. Virus isolated following transfection was indistinguishable from wild-type virus in a rodent model of infection and spread to retinorecipient regions of the brain following inoculation in the vitreous body of the eye. Mutagenesis of pBecker1 in E. coli with a mini-Tn5-derived transposon enabled the rapid isolation of insertion mutants, identification of essential viral genes, and simplified construction of viral revertants. The serial passage of a viral insertion mutant demonstrated the transposon insertion to be stable. However, the F-plasmid insertion present in the viral gG locus was found to undergo a spontaneous deletion following transfection into eukaryotic cells. The implications of F-plasmid insertion into the viral genome with regard to phenotype and genomic stability are discussed.  相似文献   
94.
Two modes of pseudorabies virus neuroinvasion and lethality in mice   总被引:3,自引:0,他引:3  
We describe two distinct modes of neuroinvasion and lethality after murine flank inoculation with virulent and attenuated strains of pseudorabies virus (PRV). Mice infected with virulent (e.g., PRV-Becker, PRV-Kaplan, or PRV-NIA3) strains self-mutilate their flank skin in response to virally induced pruritus, die rapidly with no identifiable symptoms of central nervous system (CNS) infection such as behavioral abnormalities, and have little infectious virus or viral antigen in the brain. In distinct contrast, animals infected with an attenuated PRV vaccine strain (PRV-Bartha) survive approximately three times longer than wild-type PRV-infected animals, exhibit severe CNS abnormalities, and have an abundance of infectious virus in the brain at the time of death. Interestingly, these animals have no skin lesions and do not appear pruritic at any time during infection. The severe pruritus and relatively earlier time until death induced by wild-type PRV infection may reflect the peripheral nervous system (PNS) and immune responses to infection rather than a fatal, virally induced CNS pathology. Based on previously characterized afferent (sensory) and efferent (motor) neuronal pathways that innervate the skin, we deduced that wild-type virulent strains transit through the PNS via both afferent and efferent routes, whereas PRV-Bartha travels by only efferent routes in the PNS en route to the brain.  相似文献   
95.
96.
The protein product of the pseudorabies virus (PRV) Us9 gene is a phosphorylated, type II membrane protein that is inserted into virion envelopes and accumulates in the trans-Golgi network. It is among a linked group of three envelope protein genes in the unique short region of the PRV genome which are absent from the attenuated Bartha strain. We found that two different Us9 null mutants exhibited no obvious phenotype after infection of PK15 cells in culture. Unlike those of gE and gI null mutants, the plaque size of Us9 null mutants on Madin-Darby bovine kidney cells was indistinguishable from that of wild-type virus. However, both of the Us9 null mutants exhibited a defect in anterograde spread in the visual and cortical circuitry of the rat. The visual system defect was characterized by restricted infection of a functionally distinct subset of visual projections involved in the temporal organization of behavior, whereas decreased anterograde spread of virus to the cortical projection targets was characteristic of animals receiving direct injections of virus into the cortex. Spread of virus through retrograde pathways in the brain was not compromised by a Us9 deletion. The virulence of the Us9 null mutants, as measured by time to death and appearance of symptoms of infection, also was reduced after their injection into the eye, but not after cortical injection. Through sequence analysis, construction of revertants, measurement of gE and gI protein synthesis in the Us9 null mutants, and mixed-infection studies of rats, we conclude that the restricted-spread phenotype after infection of the rat nervous system reflects the loss of Us9 and is not an indirect effect of the Us9 mutations on expression of glycoproteins gE and gI. Therefore, at least three viral envelope proteins, Us9, gE, and gI, function together to promote efficient anterograde transneuronal infection by PRV in the rat central nervous system.  相似文献   
97.
Husak PJ  Kuo T  Enquist LW 《Journal of virology》2000,74(23):10975-10983
The membrane proteins gI and gE of Pseudorabies virus (PRV) are required for viral invasion and spread through some neural pathways of the rodent central nervous system. Following infection of the rat retina with wild-type PRV, virus replicates in retinal ganglion neurons and anterogradely spreads to infect all visual centers in the brain. By contrast, gI and gE null mutants do not infect a specific subset of the visual centers, e.g., the superior colliculus and the dorsal lateral geniculate nucleus. In previous experiments, we suggested that the defect was not due to inability to infect projection-specific retinal ganglion cells, because mixed infection of a gE deletion mutant and a gI deletion mutant restored the wild-type phenotype (i.e., genetic complementation occurred). In the present study, we provide direct evidence that gE and gI function to promote the spread of infection after entry into primary neurons. We used stereotaxic central nervous system injection of a fluorescent retrograde tracer into the superior colliculus and subsequent inoculation of a PRV gI-gE double null mutant into the eye of the same animal to demonstrate that viral antigen and fluorescent tracer colocalize in retinal ganglion cells. Furthermore, we demonstrate that direct injection of a PRV gI-gE double null mutant into the superior colliculus resulted in robust infection followed by retrograde transport to the eye and replication in retinal ganglion neuron cell bodies. These experiments provide additional proof that the retinal ganglion cells projecting to the superior colliculus are susceptible and permissive to gE and gI mutant viruses. Our studies confirm that gI and gE specifically facilitate anterograde spread of infection by affecting intracellular processes in the primary infected neuron such as anterograde transport in axons or egress from axon terminals.  相似文献   
98.
The Us9 gene is conserved among most alphaherpesviruses. In pseudorabies virus (PRV), the Us9 protein is a 98-amino-acid, type II membrane protein found in the virion envelope. It localizes to the trans-Golgi network (TGN) region in infected and transfected cells and is maintained in this compartment by endocytosis from the plasma membrane. Viruses with Us9 deleted have no observable defects in tissue culture yet have reduced virulence and restricted spread to retinorecipient neurons in the rodent brain. In this report, we demonstrate that Us9-promoted transneuronal spread in vivo is dependent on a conserved acidic motif previously shown to be essential for the maintenance of Us9 in the TGN region and recycling from the plasma membrane. Mutant viruses with the acidic motif deleted have an anterograde spread defect indistinguishable from that of Us9 null viruses. Transneuronal spread, however, is not dependent on a dileucine endocytosis motif in the Us9 cytoplasmic tail. Through alanine scanning mutagenesis of the acidic motif, we have identified two conserved tyrosine residues that are essential for Us9-mediated spread as well as two serine residues, comprising putative consensus casein kinase II sites, that modulate the rate of PRV transneuronal spread in vivo.  相似文献   
99.
100.
Yoon H  Enquist LW  Dulac C 《Cell》2005,123(4):669-682
In order to gain insight into sensory processing modulating reproductive behavioral and endocrine changes, we have aimed at identifying afferent pathways to neurons synthesizing luteinizing hormone-releasing hormone (LHRH, also known as gonadotropin-releasing hormone [GnRH]), a key neurohormone of reproduction. Injection of conditional pseudorabies virus into the brain of an LHRH::CRE mouse line led to the identification of neuronal networks connected to LHRH neurons. Remarkably, and in contrast to established notions on the nature of LHRH neuronal inputs, our data identify major olfactory projection pathways originating from a discrete population of olfactory sensory neurons but fail to document any synaptic connectivity with the vomeronasal system. Accordingly, chemosensory modulation of LHRH neuronal activity and mating behavior are dramatically impaired in absence of olfactory function, while they appear unaffected in mouse mutants lacking vomeronasal signaling. Further visualization of afferents to LHRH neurons across the brain offers a unique opportunity to uncover complex polysynaptic circuits modulating reproduction and fertility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号