首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   14篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   8篇
  2015年   6篇
  2014年   6篇
  2013年   7篇
  2012年   10篇
  2011年   10篇
  2010年   9篇
  2009年   11篇
  2008年   12篇
  2007年   13篇
  2006年   18篇
  2005年   9篇
  2004年   10篇
  2003年   17篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   5篇
  1984年   2篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1933年   1篇
排序方式: 共有209条查询结果,搜索用时 375 毫秒
91.
Antimicrobial peptides allegedly exert their action on microbial membranes. Bovine lactoferrin enfold two antimicrobial domains, lactoferricin B (LFcin B) and lactoferrampin (LFampin). Effects of representative peptides thereof on the membranes of Candida albicans and Escherichia coli were investigated. Confocal laser scanning microscopy revealed that these peptides were internalized within a few minutes, concurrently with disrupting membrane integrity as indicated by freeze-fracture transmission electron microscopy. The most striking findings were induction of distinct vesicle-like structures in the membrane of C. albicans by the LFampin peptide, and detachment of the outer membrane and surface protrusions in E. coli by the LFcin B peptide.  相似文献   
92.
PDE4B and PDE4D provide >90% of PDE4 cAMP phosphodiesterase activity in human embryonic kidney (HEK293B2) cells. Their selective small interference RNA (siRNA)-mediated knockdown potentiates isoprenaline-stimulated protein kinase A (PKA) activation. Whereas endogenous PDE4D co-immunoprecipitates with beta arrestin, endogenous PDE4B does not, even upon PDE4D knockdown. Ectopic overexpression of PDE4B2 confers co-immunoprecipitation with beta arrestin. Knockdown of PDE4D, but not PDE4B, amplifies isoprenaline-stimulated phosphorylation of the beta2-adrenergic receptor (beta2-AR) by PKA and activation of extracellular signal-regulated kinase (ERK) through G(i). Isoform-selective knockdown identifies PDE4D5 as the functionally important species regulating isoprenaline stimulation of both these processes. Ht31-mediated disruption of the tethering of PKA to AKAP scaffold proteins attenuates isoprenaline activation of ERK, even upon PDE4D knockdown. Selective siRNA-mediated knockdown identifies AKAP79, which is constitutively associated with the beta2-AR, rather than isoprenaline-recruited gravin, as being the functionally relevant AKAP in this process. Isoprenaline-stimulated membrane recruitment of PDE4D is ablated upon beta arrestin knockdown. A mutation that compromises interactions with beta arrestin prevents catalytically inactive PDE4D5 from performing a dominant negative role in potentiating isoprenaline-stimulated ERK activation. Beta arrestin-recruited PDE4D5 desensitizes isoprenaline-stimulated PKA phosphorylation of the beta2-AR and the consequential switching of its signaling to ERK. The ability to observe a cellular phenotype upon PDE4D5 knockdown demonstrates that other PDE4 isoforms, expressed at endogenous levels, are unable to afford rescue in HEK293B2 cells.  相似文献   
93.
94.
Yersinia pestis is the causative agent of plague. As adequate antibiotic treatment falls short and currently no effective vaccine is available, alternative therapeutic strategies are needed. In order to contribute to solving this problem we investigated the therapeutic potential of the peptide construct LFchimera against the safer-to-handle Y. pestis simulants Yersinia enterocolitica and Yersinia pseudotuberculosis in vitro. LFchimera is a heterodimeric peptide construct mimicking two antimicrobial domains of bovine lactoferrin, i.e. lactoferrampin and lactoferricin. LFchimera has been shown to be a potent antimicrobial peptide against a variety of bacteria in vitro and in vivo. Also Y. enterocolitica and Y. pseudotuberculosis have been shown to be susceptible for LFchimera in vitro. As Yersiniae spp. adhere to and invade host cells upon infection, we here investigated the effects of LFchimera on these processes. It was found that LFchimera has the capacity to inhibit host-cell invasion by Yersiniae spp. in vitro. This effect appeared to be host-cell mediated, not bacteria-mediated. Furthermore it was found that exposure of human HeLa epithelial cells to both LFchimera and the bacterial strains evoked a pro-inflammatory cytokine release from the cells in vitro.  相似文献   
95.
96.
Cyclotriazadisulfonamide (CADA) inhibits the co‐translational translocation of human CD4 (huCD4) into the endoplasmic reticulum lumen in a signal peptide (SP)‐dependent way. We propose that CADA binds the nascent huCD4 SP in a folded conformation within the translocon resembling a normally transitory state during translocation. Here, we used alanine scanning on the huCD4 SP to identify the signature for full susceptibility to CADA. In accordance with our previous work, we demonstrate that residues in the vicinity of the hydrophobic h‐region are critical for sensitivity to CADA. In particular, exchanging Gln‐15, Val‐17 or Pro‐20 in the huCD4 SP for Ala resulted in a resistant phenotype. Together with positively charged residues at the N‐terminal portion of the mature protein, these residues mediate full susceptibility to the co‐translational translocation inhibitory activity of CADA towards huCD4. In addition, sensitivity to CADA is inversely related to hydrophobicity in the huCD4 SP. In vitro translocation experiments confirmed that the general hydrophobicity of the h‐domain and positive charges in the mature protein are key elements that affect both the translocation efficiency of huCD4 and the sensitivity towards CADA. Besides these two general SP parameters that determine the functionality of the signal sequence, unique amino acid pairs (L14/Q15 and L19/P20) in the SP hydrophobic core add specificity to the sensitivity signature for a co‐translational translocation inhibitor.  相似文献   
97.
98.
LFchimera, a construct combining two antimicrobial domains of bovine lactoferrin, lactoferrampin265–284 and lactoferricin17–30, possesses strong bactericidal activity. As yet, no experimental evidence was presented to evaluate the mechanisms of LFchimera against Burkholderia isolates. In this study we analyzed the killing activity of LFchimera on the category B pathogen Burkholderia pseudomallei in comparison to the lesser virulent Burkholderia thailandensis often used as a model for the highly virulent B. pseudomallei. Killing kinetics showed that B. thailandensis E264 was more susceptible for LFchimera than B. pseudomallei 1026b. Interestingly the bactericidal activity of LFchimera appeared highly pH dependent; B. thailandensis killing was completely abolished at and below pH 6.4. FITC-labeled LFchimera caused a rapid accumulation within 15 min in the cytoplasm of both bacterial species. Moreover, freeze-fracture electron microscopy demonstrated extreme effects on the membrane morphology of both bacterial species within 1 h of incubation, accompanied by altered membrane permeability monitored as leakage of nucleotides. These data indicate that the mechanism of action of LFchimera is similar for both species and encompasses disruption of the plasma membrane and subsequently leakage of intracellular nucleotides leading to cell dead.  相似文献   
99.
The restitution properties of cardiac action potential duration (APD) and conduction velocity (CV) are important factors in arrhythmogenesis. They determine alternans, wavebreak, and the patterns of reentrant arrhythmias. We developed a novel approach to characterize restitution using transfer functions. Transfer functions relate an input and an output quantity in terms of gain and phase shift in the complex frequency domain. We derived an analytical expression for the transfer function of interbeat intervals (IBIs) during conduction from one site (input) to another site downstream (output). Transfer functions can be efficiently obtained using a stochastic pacing protocol. Using simulations of conduction and extracellular mapping of strands of neonatal rat ventricular myocytes, we show that transfer functions permit the quantification of APD and CV restitution slopes when it is difficult to measure APD directly. We find that the normally positive CV restitution slope attenuates IBI variations. In contrast, a negative CV restitution slope (induced by decreasing extracellular [K+]) amplifies IBI variations with a maximum at the frequency of alternans. Hence, it potentiates alternans and renders conduction unstable, even in the absence of APD restitution. Thus, stochastic pacing and transfer function analysis represent a powerful strategy to evaluate restitution and the stability of conduction.  相似文献   
100.
Desmocollin (Dsc) 1–3 and desmoglein (Dsg) 1–4, transmembrane proteins of the cadherin family, form the adhesive core of desmosomes. Here we provide evidence that Dsc3 homo- and heterophilic trans-interaction is crucial for epidermal integrity. Single molecule atomic force microscopy (AFM) revealed homophilic trans-interaction of Dsc3. Dsc3 displayed heterophilic interaction with Dsg1 but not with Dsg3. A monoclonal antibody targeted against the extracellular domain reduced homophilic and heterophilic binding as measured by AFM, caused intraepidermal blistering in a model of human skin, and a loss of intercellular adhesion in cultured keratinocytes. Because autoantibodies against Dsg1 are associated with skin blistering in pemphigus, we characterized the role of Dsc3 binding for pemphigus pathogenesis. In contrast to AFM experiments, laser tweezer trapping revealed that pemphigus autoantibodies reduced binding of Dsc3-coated beads to the keratinocyte cell surface. These data indicate that loss of heterophilic Dsc3/Dsg1 binding may contribute to pemphigus skin blistering.Desmogleins (Dsg)2 and desmocollins (Dsc) are members of the Ca2+-dependent cadherin family of adhesion molecules that extend with their outer domains into the extracellular core of desmosomes. Desmosomal cadherins include four Dsg (Dsg1–4) and three Dsc3 isoforms (Dsc1–3) (1, 2). Desmosomal cadherins share a common domain organization with five N-terminally located extracellular subdomains (EC1–5). The membrane-distal EC1 domain is thought to contain the adhesive interface necessary for trans-interaction as could be concluded from structural analysis and blocking studies using peptides and antibodies (35). By establishing trans- and cis-interacting adhesive complexes, desmosomal cadherins participate in providing mechanical strength to stratified epithelia (6). In human epidermis Dsg1 and Dsc1 expression decreases from the outermost granular layer toward deeper layers, whereas Dsg3 and Dsc3 are primarily found in the basal layer and display an inverse expression gradient (7, 8). In contrast to classical cadherins present in adherens junctions that primarily undergo homophilic trans-interaction, desmosomal cadherins are generally believed to mediate both homo- and heterophilic binding (9). Recently, an important role of Dsc3 for integrity of murine epidermis was demonstrated in animals with conditional epidermal Dsc3 deficiency that suffered from severe intraepidermal blister formation (10) comparable with the phenotype of the autoimmune bullous skin disease pemphigus vulgaris (PV) (11). PV is associated with antibodies (Abs) against Dsg3, in part combined with Abs targeting Dsg1, whereas Dsg1 Abs alone are associated with pemphigus foliaceus (PF). However, PV and PF sera usually do not contain autoantibodies targeting Dsc3 (12). In view of the apparently important role of Dsc3 in epidermal adhesion, we addressed whether Dsg1 and Dsg3 might heterophilically interact with Dsc3 and whether Abs in pemphigus might interfere with such type of interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号