首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   14篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   8篇
  2015年   6篇
  2014年   6篇
  2013年   7篇
  2012年   10篇
  2011年   10篇
  2010年   9篇
  2009年   11篇
  2008年   12篇
  2007年   13篇
  2006年   18篇
  2005年   9篇
  2004年   10篇
  2003年   17篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   5篇
  1984年   2篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1933年   1篇
排序方式: 共有209条查询结果,搜索用时 993 毫秒
121.
Background and Aim. Failure of primary anti‐H. pylori therapy results in a high rate of antimicrobial resistance. Here, we investigated the efficacy of high‐dose dual therapy and quadruple therapy as salvage treatments for eradication of H. pylori resistant to both metronidazole and clarithromycin. Patients and Methods. Patients with at least one treatment failure and infected with H. pylori resistant to both metronidazole and clarithromycin, were randomized to receive either omeprazole 4 × 40 mg and amoxicillin 4 × 750 mg; or omeprazole 2 × 20 mg, bismuthcitrate 4 × 107 mg, metronidazole 4 × 500 mg and tetracycline 4 × 500 mg. Both regimens were given for 14 days. In cases of persistent infection, a cross‐over therapy was performed. Results. Eighty‐four patients were randomized. Cure of H. pylori infection was achieved in 31 patients after dual therapy and in 35 patients after quadruple therapy (per protocol: 83.8% (95% CI, 67.9–93.8) and 92.1% (95% CI, 78.6–98.3), respectively (p = 0.71); intention to treat: 75.6% (95% CI: 59.7–87.6) and 81.4% (95% CI: 66.6–91.6), respectively (p = 0.60)). Cross‐over therapy was performed in six of nine patients, four of whom were cured of the infection. Conclusion. Both high‐dose dual therapy and quadruple therapy are effective in curing H. pylori infection resistant to both metronidazole and clarithromycin in patients who experienced previous treatment failures.  相似文献   
122.
The twin-arginine translocation (Tat) pathway, which has been identified in plant chloroplasts and prokaryotes, allows for the secretion of folded proteins. However, the extent to which this pathway is used among the prokaryotes is not known. By using a genomic approach, a comprehensive list of putative Tat substrates for 84 diverse prokaryotes was established. Strikingly, the results indicate that the Tat pathway is utilized to highly varying extents. Furthermore, while many prokaryotes use this pathway predominantly for the secretion of redox proteins, analyses of the predicted substrates suggest that certain bacteria and archaea secrete mainly nonredox proteins via the Tat pathway. While no correlation was observed between the number of Tat machinery components encoded by an organism and the number of predicted Tat substrates, it was noted that the composition of this machinery was specific to phylogenetic taxa.  相似文献   
123.
The 5'-end maturation of tRNAs is catalyzed by the ribonucleoprotein enzyme ribonuclease P (RNase P) in all organisms. Here we provide, for the first time, a comprehensive overview on the representation of individual RNase P protein homologs within the Eukarya and Archaea. Most eukaryotes have homologs for all four protein subunits (Pop4, Rpp1, Pop5 and Rpr2) present in the majority of Archaea. Pop4 is the only RNase P protein subunit identifiable in all Eukarya and Archaea with available genome sequences. Remarkably, there is no structural homology between bacterial and archaeal-eukaryotic RNase P proteins. The simplest interpretation is that RNase P has an 'RNA-alone' origin and progenitors of Bacteria and Archaea diverged very early in evolution and then pursued completely different strategies in the recruitment of protein subunits during the transition from the 'RNA-alone' to the 'RNA-protein' state of the enzyme.  相似文献   
124.
Histatins, salivary antimicrobial peptides, are susceptible to proteolytic degradation, often ascribed to host proteinases. In this study, we addressed the question whether proteolytic activity from microbial sources can contribute to this degradation. Candida albicans, an opportunistic yeast that is susceptible to the histatins, was used as target organism. The most potent histatin (histatin 5: sequence: DSHAKRHHGYKRKFHEKHHSHRGY), two histatin 5 fragments (dh-5: sequence: KRKFHEKHHSHRGY; P-113: sequence: AKRHHGYKRKFH) and an all-D isomer of the latter (P-113D) were used as model peptides. All L-peptides were susceptible to degradation by C. albicans. Cleavage was established at Lys5 and His19 of histatin 5, Lys11, Arg12, Phe14, Glu16, Lys17, His18 and Ser20 of dh-5 and Ala4 and Lys11 of P-113. In addition, it was found that secreted C. albicans enzymes are not involved in the degradation process and that blocking cell entry of the peptides greatly impedes degradation. Moreover, P-113D, which is biologically as active as P-113, was hardly susceptible to proteolysis. These data imply that proteolysis occurs mainly intracellularly and is not used as a protective mechanism against histatin activity. Together, our results suggest that, besides host proteinases, microbial enzymes play an important role in histatin degradation.  相似文献   
125.
The increase in the use of antifungal agents for prophylaxis and therapy has led to the development of antifungal drug resistance. Drug combinations may prevent or delay resistance development. The aim of the present study was to investigate whether naturally and designed cationic antifungal peptides act synergistically with commonly used antimycotics. No enhanced activity was found upon addition of dhvar4, a designed analogue of the human salivary peptide histatin 5, or PGLa to fluconazole or 5–flucytosine, respectively. In contrast, strong synergism of amphotericin B with the peptides was found against several Aspergillus, Candida, and Cryptococcus strains, and against an amphotericin B-resistant C. albicans laboratory mutant in the standardised broth microdilution assays according to the NCCLS standard method M27–T. Amphotericin B showed synergism with dhvar5, another designed analogue of histatin 5, and with magainin 2 against all seven tested strains. Combinations of amphotericin B with histatin 5, dhvar4, and PGLa showed synergism against four of the seven strains. The growth inhibitory activity of amphotericin B was enhanced by sub-MIC concentrations of peptide, but its haemolytic activity remained unaffected, suggesting that its cytotoxicity to host cells was not increased and that peptides may be suitable candidates for combination therapy.  相似文献   
126.
The function of the ectomycorrhizal mutualism depends on the ability of the fungal symbionts to take up nutrients (particularly nitrogen) available in inorganic and/or organic form in the soil and to translocate them (or their metabolites) to the symbiotic roots. A better understanding of the molecular mechanisms underlying nutrient exchanges between fungus and plant at the symbiotic interface is necessary to fully understand the function of the mycorrhizal symbioses. The present review reports the characterization of several genes putatively involved in nitrogen uptake and transfer in the Hebeloma cylindrosporum-Pinus pinaster ectomycorrhizal association. Study of this model system will further clarify the symbiotic nutrient exchange which plays a major role in plant nutrition as well as in resistance of plants against pathogens, heavy metals, drought stress, etc. Ultimately, ecological balance is maintained and/or improved with the help of symbiotic associations, and therefore, warrant further understanding.  相似文献   
127.
Cyclic nucleotide phosphodiesterase 3A (PDE3) regulates cAMP-mediated signaling in the heart, and PDE3 inhibitors augment contractility in patients with heart failure. Studies in mice showed that PDE3A, not PDE3B, is the subfamily responsible for these inotropic effects and that murine PDE3A1 associates with sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2), phospholamban (PLB), and AKAP18 in a multiprotein signalosome in human sarcoplasmic reticulum (SR). Immunohistochemical staining demonstrated that PDE3A co-localizes in Z-bands of human cardiac myocytes with desmin, SERCA2, PLB, and AKAP18. In human SR fractions, cAMP increased PLB phosphorylation and SERCA2 activity; this was potentiated by PDE3 inhibition but not by PDE4 inhibition. During gel filtration chromatography of solubilized SR membranes, PDE3 activity was recovered in distinct high molecular weight (HMW) and low molecular weight (LMW) peaks. HMW peaks contained PDE3A1 and PDE3A2, whereas LMW peaks contained PDE3A1, PDE3A2, and PDE3A3. Western blotting showed that endogenous HMW PDE3A1 was the principal PKA-phosphorylated isoform. Phosphorylation of endogenous PDE3A by rPKAc increased cAMP-hydrolytic activity, correlated with shift of PDE3A from LMW to HMW peaks, and increased co-immunoprecipitation of SERCA2, cav3, PKA regulatory subunit (PKARII), PP2A, and AKAP18 with PDE3A. In experiments with recombinant proteins, phosphorylation of recombinant human PDE3A isoforms by recombinant PKA catalytic subunit increased co-immunoprecipitation with rSERCA2 and rat rAKAP18 (recombinant AKAP18). Deletion of the recombinant human PDE3A1/PDE3A2 N terminus blocked interactions with recombinant SERCA2. Serine-to-alanine substitutions identified Ser-292/Ser-293, a site unique to human PDE3A1, as the principal site regulating its interaction with SERCA2. These results indicate that phosphorylation of human PDE3A1 at a PKA site in its unique N-terminal extension promotes its incorporation into SERCA2/AKAP18 signalosomes, where it regulates a discrete cAMP pool that controls contractility by modulating phosphorylation-dependent protein-protein interactions, PLB phosphorylation, and SERCA2 activity.  相似文献   
128.
Sorting by weighted reversals, transpositions, and inverted transpositions.   总被引:1,自引:0,他引:1  
During evolution, genomes are subject to genome rearrangements that alter the ordering and orientation of genes on the chromosomes. If a genome consists of a single chromosome (like mitochondrial, chloroplast, or bacterial genomes), the biologically relevant genome rearrangements are (1) inversions--also called reversals--where a section of the genome is excised, reversed in orientation, and reinserted and (2) transpositions, where a section of the genome is excised and reinserted at a new position in the genome; if this also involves an inversion, one speaks of an inverted transposition. To reconstruct ancient events in the evolutionary history of organisms, one is interested in finding an optimal sequence of genome rearrangements that transforms a given genome into another genome. It is well known that this problem is equivalent to the problem of "sorting" a signed permutation into the identity permutation. In this paper, we provide a 1.5-approximation algorithm for sorting by weighted reversals, transpositions and inverted transpositions for biologically realistic weights.  相似文献   
129.
Salivary agglutinin (SAG), lung glycoprotein-340 (gp-340) and Deleted in Malignant Brain Tumours 1 (DMBT1) are three names for identical proteins encoded by the dmbt1 gene. DMBT1/SAG/gp-340 belongs to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins, a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. On the one hand, DMBT1 may represent an innate defence factor acting as a pattern recognition molecule. It interacts with a broad range of pathogens, including cariogenic streptococci and Helicobacter pylori, influenza viruses and HIV, but also with mucosal defence proteins, such as IgA, surfactant proteins and MUC5B. Stimulation of alveolar macrophage migration, suppression of neutrophil oxidative burst and activation of the complement cascade point further to an important role in the regulation of inflammatory responses. On the other hand, DMBT1 has been demonstrated to play a role in epithelial and stem cell differentiation. Inactivation of the gene coding for this protein may lead to disturbed differentiation, possibly resulting in tumour formation. These data strongly point to a role for DMBT1 as a molecule linking innate immune processes with regenerative processes.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号