首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   17篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   8篇
  2015年   6篇
  2014年   6篇
  2013年   7篇
  2012年   10篇
  2011年   10篇
  2010年   10篇
  2009年   11篇
  2008年   12篇
  2007年   15篇
  2006年   20篇
  2005年   12篇
  2004年   11篇
  2003年   18篇
  2002年   9篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1960年   1篇
  1933年   1篇
排序方式: 共有246条查询结果,搜索用时 15 毫秒
91.
Synthesis of ATP from ADP and phosphate, catalyzed by F(0)F(1)-ATP synthases, is the most abundant physiological reaction in almost any cell. F(0)F(1)-ATP synthases are membrane-bound enzymes that use the energy derived from an electrochemical proton gradient for ATP formation. We incorporated double-labeled F(0)F(1)-ATP synthases from Escherichia coli into liposomes and measured single-molecule fluorescence resonance energy transfer (FRET) during ATP synthesis and hydrolysis. The gamma subunit rotates stepwise during proton transport-powered ATP synthesis, showing three distinct distances to the b subunits in repeating sequences. The average durations of these steps correspond to catalytic turnover times upon ATP synthesis as well as ATP hydrolysis. The direction of rotation during ATP synthesis is opposite to that of ATP hydrolysis.  相似文献   
92.
In eukaryotic cells, surface expression of most type I transmembrane proteins requires translation and simultaneous insertion of the precursor protein into the endoplasmic reticulum (ER) membrane for subsequent routing to the cell surface. This co-translational translocation pathway is initiated when a hydrophobic N-terminal signal peptide (SP) on the nascent protein emerges from the ribosome, binds the cytosolic signal recognition particle (SRP), and targets the ribosome-nascent chain complex to the Sec61 translocon, a universally conserved protein-conducting channel in the ER-membrane. Despite their common function in Sec61 targeting and ER translocation, SPs have diverse but unique primary sequences. Thus, drugs that recognise SPs could be exploited to inhibit translocation of specific proteins into the ER. Here, through flow cytometric analysis the small-molecule macrocycle cyclotriazadisulfonamide (CADA) is identified as a highly selective human CD4 (hCD4) down-modulator. We show that CADA inhibits CD4 biogenesis and that this is due to its ability to inhibit co-translational translocation of CD4 into the lumen of the ER, both in cells as in a cell-free in vitro translation/translocation system. The activity of CADA maps to the cleavable N-terminal SP of hCD4. Moreover, through surface plasmon resonance analysis we were able to show direct binding of CADA to the SP of hCD4 and identify this SP as the target of our drug. Furthermore, CADA locks the SP in the translocon during a post-targeting step, possibly in a folded state, and prevents the translocation of the associated protein into the ER lumen. Instead, the precursor protein is routed to the cytosol for degradation. These findings demonstrate that a synthetic, cell-permeable small-molecule can be developed as a SP-binding drug to selectively inhibit protein translocation and to reversibly regulate the expression of specific target proteins.  相似文献   
93.
Detecting sudden environmental changes is crucial for the survival of humans and animals. In the human auditory system the mismatch negativity (MMN), a component of auditory evoked potentials (AEPs), reflects the violation of predictable stimulus regularities, established by the previous auditory sequence. Given the considerable potentiality of the MMN for clinical applications, establishing valid animal models that allow for detailed investigation of its neurophysiological mechanisms is important. Rodent studies, so far almost exclusively under anesthesia, have not provided decisive evidence whether an MMN analogue exists in rats. This may be due to several factors, including the effect of anesthesia. We therefore used epidural recordings in awake black hooded rats, from two auditory cortical areas in both hemispheres, and with bandpass filtered noise stimuli that were optimized in frequency and duration for eliciting MMN in rats. Using a classical oddball paradigm with frequency deviants, we detected mismatch responses at all four electrodes in primary and secondary auditory cortex, with morphological and functional properties similar to those known in humans, i.e., large amplitude biphasic differences that increased in amplitude with decreasing deviant probability. These mismatch responses significantly diminished in a control condition that removed the predictive context while controlling for presentation rate of the deviants. While our present study does not allow for disambiguating precisely the relative contribution of adaptation and prediction error processing to the observed mismatch responses, it demonstrates that MMN-like potentials can be obtained in awake and unrestrained rats.  相似文献   
94.
Ion channels exhibit stochastic conformational changes determining their gating behavior. In addition, the process of protein turnover leads to a natural variability of the number of membrane and gap junctional channels. Nevertheless, in computational models, these two aspects are scarcely considered and their impacts are largely unknown. We investigated the effects of stochastic current fluctuations and channel distributions on action potential duration (APD), intercellular conduction delays (ICDs) and conduction blocks using a modified ventricular cell model (Rudy et al.) with Markovian formulations of the principal ion currents (to simulate their stochastic open-close gating behavior) and with channel counts drawn from Poisson distributions (to simulate their natural variability). In single cells, APD variability (coefficient of variation: 1.6% at BCL=1000 ms) was essentially caused by stochastic channel gating of IKs, persistent INa and ICa,L. In cell strands, ICD variability induced by stochastic channel gating and Poissonian channel distributions was low under normal conditions. Nonetheless, at low intercellular coupling levels, Poissonian gap junctional channel distribution resulted in a large ICD variability (coefficient of variation >20%), highly heterogeneous conduction patterns and conduction blocks. Therefore, the stochastic behavior of current fluctuations and channel distributions can contribute to the heterogeneity of conduction patterns and to conduction block, as observed previously in experiments in cardiac tissue with altered intercellular coupling.  相似文献   
95.
Inhibitors of the energy metabolism, such as sodium azide and valinomycin, render yeast cells completely resistant against the killing action of a number of cationic antimicrobial peptides, including the salivary antimicrobial peptide Histatin 5. In this study the Histatin 5-mediated killing of the opportunistic yeast Candida albicans was used as a model system to comprehensively investigate the molecular basis underlying this phenomenon. Using confocal and electron microscopy it was demonstrated that the energy poison azide reversibly blocked the entry of Histatin 5 at the level of the yeast cell wall. Azide treatment hardly induced depolarization of the yeast cell membrane potential, excluding it as a cause of the lowered sensitivity. In contrast, the diminished sensitivity to Histatin 5 of energy-depleted C. albicans was restored by increasing the fluidity of the membrane using the membrane fluidizer benzyl alcohol. Furthermore, rigidification of the membrane by incubation at low temperature or in the presence of the membrane rigidifier Me(2)SO increased the resistance against Histatin 5, while not affecting the energy charge of the cell. In line, azide induced alterations in the physical state of the interior of the lipid bilayer. These data demonstrate that changes in the physical state of the membrane underlie the increased resistance to antimicrobial peptides.  相似文献   
96.
Water reabsorption in the renal collecting duct is regulated by arginine vasopressin (AVP). AVP induces the insertion of the water channel aquaporin-2 (AQP2) into the plasma membrane of principal cells, thereby increasing the osmotic water permeability. The redistribution of AQP2 to the plasma membrane is a cAMP-dependent process and thus a paradigm for cAMP-controlled exocytic processes. Using primary cultured rat inner medullary collecting duct cells, we show that the redistribution of AQP2 to the plasma membrane is accompanied by the reorganization of microtubules and the redistribution of the small GTPase Rab11. In resting cells, AQP2 is colocalized with Rab11 perinuclearly. AVP induced the redistribution of AQP2 to the plasma membrane and of Rab11 to the cell periphery. The redistribution of both proteins was increased when microtubules were depolymerized by nocodazole. In addition, the depolymerization of microtubules prevented the perinuclear positioning of AQP2 and Rab11 in resting cells, which was restored if nocodazole was washed out and microtubules repolymerized. After internalization of AQP2, induced by removal of AVP, forskolin triggered the AQP2 redistribution to the plasma membrane even if microtubules were depolymerized and without the previous positioning of AQP2 in the perinuclear recycling compartment. Collectively, the data indicate that microtubule-dependent transport of AQP2 is predominantly responsible for trafficking and localization of AQP2 inside the cell after its internalization but not for the exocytic transport of the water channel. We also demonstrate that cAMP-signaling regulates the localization of Rab11-positive recycling endosomes in renal principal cells. dynein; Rab11  相似文献   
97.
The unique 88 amino acid N-terminal region of cAMP-specific phosphodiesterase-4D5 (PDE4D5) contains overlapping binding sites conferring interaction with the signaling scaffold proteins, betaarrestin and RACK1. A 38-mer peptide, whose sequence reflected residues 12 through 49 of PDE4D5, encompasses the entire N-terminal RACK1 Interaction Domain (RAID1) together with a portion of the beta-arrestin binding site. (1)H NMR and CD analyses indicate that this region has propensity to form a helical structure. The leucine-rich hydrophobic grouping essential for RACK1 interaction forms a discrete hydrophobic ridge located along a single face of an amphipathic alpha-helix with Arg34 and Asn36, which also play important roles in RACK1 binding. The Asn22/Pro23/Trp24/Asn26 grouping, essential for RACK1 interaction, was located at the N-terminal head of the amphipathic helix that contained the hydrophobic ridge. RAID1 is thus provided by a distinct amphipathic helical structure. We suggest that the binding of PDE4D5 to the WD-repeat protein, RACK1, may occur in a manner akin to the helix-helix interaction shown for G(gamma) binding to the WD-repeat protein, G(beta). A more extensive section of the PDE4D5 N-terminal sequence (Thr11-Ala85) is involved in beta-arrestin binding. Several residues within the RAID1 helix contribute to this interaction however. We show here that these residues form a focused band around the centre of the RAID1 helix, generating a hydrophobic patch (from Leu29, Val30 and Leu33) flanked by polar/charged residues (Asn26, Glu27, Asp28, Arg34). The interaction with beta-arrestin exploits a greater circumference on the RAID1 helix, and involves two residues (Glu27, Asp28) that do not contribute to RACK1 binding. In contrast, the interaction of RACK1 with RAID1 is extended over a greater length of the helix and includes Leu37/Leu38, which do not contribute to beta-arrestin binding. A membrane-permeable, stearoylated Val12-Ser49 38-mer peptide disrupted the interaction of both beta-arrestin and RACK1 with endogenous PDE4D5 in HEKB2 cells, whilst a cognate peptide with a Glu27Ala substitution selectively failed to disrupt PDE4D5/RACK1 interaction. The stearoylated Val12-Ser49 38-mer peptide enhanced the isoprenaline-stimulated PKA phosphorylation of the beta(2)-adrenergic receptors (beta(2)AR) and its activation of ERK, whilst the Glu27Ala peptide was ineffective in both these regards.  相似文献   
98.
Very often in survival analysis one has to study martingaleintegrals where the integrand is not predictable and where thecounting process theory of martingales is not directly applicable,as for example in nonparametric and semiparametric applicationswhere the integrand is based on a pilot estimate. We call thisthe predictability issue in survival analysis. The problem hasbeen resolved by approximations of the integrand by predictablefunctions which have been justified by ad hoc procedures. Wepresent a general approach to the solution of this problem.The usefulness of the approach is shown in three applications.In particular, we argue that earlier ad hoc procedures do notwork in higher-dimensional smoothing problems in survival analysis.  相似文献   
99.
Here, we demonstrate that pancreatic microsomal membranes from pigs, sheep, or cattle destined for human consumption can be used as a valuable and ethically correct alternative to dog microsomes for cell-free protein translocation. By adding adequate ribonuclease (RNase) inhibitors to the membrane fraction, successful in vitro co-translational translocation of wild-type and chimeric pre-prolactin into the lumen of rough microsomes was obtained. In addition, the human type I integral membrane proteins CD4 and VCAM-1 were efficiently glycosylated in RNase-treated microsomes. Thus, RNase-neutralized pancreatic membrane fractions from pig, cow, or sheep are a cheap, easily accessible, and fulfilling alternative to canine microsomes.  相似文献   
100.
The Sec61 complex is the central component of the protein translocation apparatus of the ER membrane. We have addressed the role of the β subunit (Sec61β) during cotranslational protein translocation. With a reconstituted system, we show that a Sec61 complex lacking Sec61β is essentially inactive when elongation and membrane targeting of a nascent chain occur at the same time. The translocation process is perturbed at a step where the nascent chain would be inserted into the translocation channel. However, if sufficient time is given for the interaction of the nascent polypeptide with the mutant Sec61 complex, translocation is almost normal. Thus Sec61β kinetically facilitates cotranslational translocation, but is not essential for it.

Using chemical cross-linking we show that Sec61β not only interacts with subunits of the Sec61 complex but also with the 25-kD subunit of the signal peptidase complex (SPC25), thus demonstrating for the first time a tight interaction between the SPC and the Sec61 complex. Interestingly, the cross-links between Sec61β and SPC25 and between Sec61β and Sec61α depend on the presence of membrane-bound ribosomes, suggesting that these interactions are induced when translocation is initiated. We propose that the SPC is transiently recruited to the translocation site, thus enhancing its activity.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号