首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   64篇
  国内免费   1篇
  360篇
  2021年   6篇
  2020年   3篇
  2017年   2篇
  2016年   2篇
  2015年   8篇
  2014年   7篇
  2013年   19篇
  2012年   19篇
  2011年   16篇
  2010年   11篇
  2009年   9篇
  2008年   10篇
  2007年   12篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   10篇
  2002年   3篇
  2001年   8篇
  2000年   7篇
  1999年   12篇
  1998年   4篇
  1997年   4篇
  1996年   8篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   12篇
  1991年   11篇
  1990年   9篇
  1989年   18篇
  1988年   9篇
  1987年   9篇
  1986年   6篇
  1985年   5篇
  1984年   8篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1978年   6篇
  1977年   8篇
  1976年   2篇
  1975年   6篇
  1974年   3篇
  1972年   5篇
  1971年   4篇
  1970年   2篇
  1969年   3篇
  1968年   3篇
  1965年   2篇
排序方式: 共有360条查询结果,搜索用时 0 毫秒
31.
Xue T  Ennis IL  Sato K  French RJ  Li RA 《Biophysical journal》2003,85(4):2299-2310
micro -Conotoxins ( micro -CTX) are peptides that inhibit Na(+) flux by blocking the Na(+) channel pore. Toxin residue arginine 13 is critical for both high affinity binding and for complete block of the single channel current, prompting the simple conventional view that residue 13 (R13) leads toxin docking by entering the channel along the pore axis. To date, the strongest interactions identified are between micro -CTX and domain II (DII) or DIII pore residues of the rat skeletal muscle (Na(v)1.4) Na(+) channels, but little data is available for the role of the DI P-loop in micro -CTX binding due to the lack of critical determinants identified in this domain. Despite being an essential determinant of isoform-specific tetrodotoxin sensitivity, the DI-Y401C variant had little effect on micro -CTX block. Here we report that the charge-changing substitution Y401K dramatically reduced the micro -CTX affinity ( approximately 300-fold). Using mutant cycle analysis, we demonstrate that K401 couples strongly to R13 (DeltaDeltaG > 3.0 kcal/mol) but not R1, K11, or R14 (<1 kcal/mol). Unlike K401, however, a significant coupling was detected between toxin residue 14 and DI-E403K (DeltaDeltaG = 1.4 kcal/mol for the E403K-Q14D pair). This appears to underlie the ability of DI-E403K channels to discriminate between the GIIIA and GIIIB isoforms of micro -CTX (p < 0.05), whereas Y401K, DII-E758Q, and DIII-D1241K do not. We also identify five additional, novel toxin-channel interactions (>0.75 kcal/mol) in DII (E758-K16, D762-R13, D762-K16, E765-R13, E765-K16). Considered together, these new interactions suggest that the R13 side chain and the bulk of the bound toxin micro -CTX molecule may be significantly tilted with respect to pore axis.  相似文献   
32.
mu-Conotoxins (mu-CTXs) block skeletal muscle Na(+) channels with an affinity 1-2 orders of magnitude higher than cardiac and brain Na(+) channels. Although a number of conserved pore residues are recognized as critical determinants of mu-CTX block, the molecular basis of isoform-specific toxin sensitivity remains unresolved. Sequence comparison of the domain II (DII) S5-S6 loops of rat skeletal muscle (mu1, Na(v)1.4), human heart (hh1, Na(v)1.5), and rat brain (rb1, Na(v)1.1) Na(+) channels reveals substantial divergence in their N-terminal S5-P linkers even though the P-S6 and C-terminal P segments are almost identical. We used Na(v)1.4 as the backbone and systematically converted these DII S5-P isoform variants to the corresponding residues in Na(v)1.1 and Na(v)1.5. The Na(v)1.4-->Na(v)1.5 variant substitutions V724R, C725S, A728S, D730S, and C731S (Na(v)1.4 numbering) reduced block of Na(v)1.4 by 4-, 86-, 12-, 185-, and 55-fold respectively, rendering the skeletal muscle isoform more "cardiac-like." Conversely, an Na(v)1.5--> Na(v)1.4 chimeric construct in which the Na(v)1.4 DII S5-P linker replaces the analogous segment in Na(v)1.5 showed enhanced mu-CTX block. However, these variant determinants are conserved between Na(v)1.1 and Na(v)1.4 and thus cannot explain their different sensitivities to mu-CTX. Comparison of their sequences reveals two variants at Na(v)1.4 positions 729 and 732: Ser and Asn in Na(v)1.4 compared with Thr and Lys in Na(v)1.1, respectively. The double mutation S729T/N732K rendered Na(v)1.4 more "brain-like" (30-fold downward arrow in block), and the converse mutation T925S/K928N in Na(v)1.1 reproduced the high affinity blocking phenotype of Na(v)1.4. We conclude that the DII S5-P linker, although lying outside the conventional ion-conducting pore, plays a prominent role in mu-CTX binding, thus shaping isoform-specific toxin sensitivity.  相似文献   
33.
A ubiquitination factor, NosA, is essential for cellular differentiation in Dictyostelium discoideum. In the absence of nosA, development is blocked, resulting in a developmental arrest at the tight-aggregate stage, when cells differentiate into two precursor cell types, prespore and prestalk cells. Development is restored when a second gene, encoding the ubiquitin-like protein SonA, is inactivated in nosA-mutant cells. SonA has homology over its entire length to Dsk2 from Saccharomyces cerevisiae, a ubiquitin-like protein that is involved in the assembly of the spindle pole body. Dsk2 and SonA are both stable proteins that do not seem to be subjected to degradation via the ubiquitin pathway. SonA does not become ubiquitinated and the intracellular levels of SonA are not affected by the absence of NosA. The high degree of suppression suggests that SonA rescues most or all of the defects caused by the absence of nosA. We propose that NosA and SonA act in concert to control the activity of a developmental regulator that must be deactivated for cells to cross a developmental boundary.  相似文献   
34.
35.
mu-Conotoxin (mu-CTX) specifically occludes the pore of voltage-dependent Na(+) channels. In the rat skeletal muscle Na(+) channel (mu1), we examined the contribution of charged residues between the P loops and S6 in all four domains to mu-CTX block. Conversion of the negatively charged domain II (DII) residues Asp-762 and Glu-765 to cysteine increased the IC(50) for mu-CTX block by approximately 100-fold (wild-type = 22.3 +/- 7.0 nm; D762C = 2558 +/- 250 nm; E765C = 2020 +/- 379 nm). Restoration or reversal of charge by external modification of the cysteine-substituted channels with methanethiosulfonate reagents (methanethiosulfonate ethylsulfonate (MTSES) and methanethiosulfonate ethylammonium (MTSEA)) did not affect mu-CTX block (D762C: IC(50, MTSEA+) = 2165.1 +/- 250 nm; IC(50, MTSES-) = 2753.5 +/- 456.9 nm; E765C: IC(50, MTSEA+) = 2200.1 +/- 550.3 nm; IC(50, MTSES-) = 3248.1 +/- 2011.9 nm) compared with their unmodified counterparts. In contrast, the charge-conserving mutations D762E (IC(50) = 21.9 +/- 4.3 nm) and E765D (IC(50) = 22.0 +/- 7.0 nm) preserved wild-type blocking behavior, whereas the charge reversal mutants D762K (IC(50) = 4139.9 +/- 687.9 nm) and E765K (IC(50) = 4202.7 +/- 1088.0 nm) destabilized mu-CTX block even further, suggesting a prominent electrostatic component of the interactions between these DII residues and mu-CTX. Kinetic analysis of mu-CTX block reveals that the changes in toxin sensitivity are largely due to accelerated toxin dissociation (k(off)) rates with little changes in association (k(on)) rates. We conclude that the acidic residues at positions 762 and 765 are key determinants of mu-CTX block, primarily by virtue of their negative charge. The inability of the bulky MTSES or MTSEA side chain to modify mu-CTX sensitivity places steric constraints on the sites of toxin interaction.  相似文献   
36.
Scientists have long sought to understand how vascular networks supply blood and oxygen to cells throughout the body. Recent work focuses on principles that constrain how vessel size changes through branching generations from the aorta to capillaries and uses scaling exponents to quantify these changes. Prominent scaling theories predict that combinations of these exponents explain how metabolic, growth, and other biological rates vary with body size. Nevertheless, direct measurements of individual vessel segments have been limited because existing techniques for measuring vasculature are invasive, time consuming, and technically difficult. We developed software that extracts the length, radius, and connectivity of in vivo vessels from contrast-enhanced 3D Magnetic Resonance Angiography. Using data from 20 human subjects, we calculated scaling exponents by four methods—two derived from local properties of branching junctions and two from whole-network properties. Although these methods are often used interchangeably in the literature, we do not find general agreement between these methods, particularly for vessel lengths. Measurements for length of vessels also diverge from theoretical values, but those for radius show stronger agreement. Our results demonstrate that vascular network models cannot ignore certain complexities of real vascular systems and indicate the need to discover new principles regarding vessel lengths.  相似文献   
37.
A critical problem in the treatment of malignant gliomas is the extensive infiltration of individual tumor cells into adjacent brain tissues. This invasive phenotype severely limits all current therapies, and to date, no treatment is available to control the spread of this disease. Members of the tumor necrosis factor (TNF) ligand superfamily and their cognate receptors regulate various cellular responses including proliferation, migration, differentiation, and apoptosis. Specifically, the TNFRSF19/TROY gene encodes a type I cell surface receptor that is expressed on migrating or proliferating progenitor cells of the hippocampus, thalamus, and cerebral cortex. Here, we show that levels of TROY mRNA expression directly correlate with increasing glial tumor grade. Among malignant gliomas, TROY expression correlates inversely with overall patient survival. In addition, we show that TROY overexpression in glioma cells activates Rac1 signaling in a Pyk2-dependent manner to drive glioma cell invasion and migration. Pyk2 coimmunoprecipitates with the TROY receptor, and depletion of Pyk2 expression by short hairpin RNA interference oligonucleotides inhibits TROY-induced Rac1 activation and subsequent cellular migration. These findings position aberrant expression and/or signaling by TROY as a contributor, and possibly as a driver, of the malignant dispersion of glioma cells.  相似文献   
38.
Primary hereditary cataract (HC) is one of the most common disorders in purebred dogs and is a leading cause of blindness. Boston Terriers suffer from 2 distinct forms of HC which occur at different ages and which are different in their appearance and progression. Early-onset hereditary cataract (EHC) affects dogs within the first few months of life, is always progressive and bilateral, and results in total blindness, whereas late-onset hereditary cataract (LHC) in general affects dogs over the age of 3 and is more variable in its clinical phenotype, age of onset, progression, and the degree to which vision is impaired. A mutation in HSF4 has recently been reported in a small number of Boston Terriers affected with EHC. In this study, we analyzed 22 additional Boston Terriers affected with early-onset cataract to confirm that the HSF4 mutation is causative for this form of cataract in this breed. In addition, we analyzed 40 Boston Terriers that were either clinically clear or affected with LHC for the presence or absence of the HSF4 mutation. By also sequencing HSF4 in dogs affected with LHC, we conclude that HSF4 is not associated with the development of the late-onset form of cataract and that the 2 forms of cataract in this breed are therefore genetically discrete conditions.  相似文献   
39.
Kang  Yun Hee  Ji  Na Young  Lee  Chung Il  Lee  Hee Gu  Kim  Jae Wha  Yeom  Young IL  Kim  Dae Ghon  Yoon  Seung Kew  Kim  Jong Wan  Park  Pil Je  Song  Eun Young 《Amino acids》2011,40(3):1003-1013
Amino Acids - Endothelial cell-specific molecule-1 (ESM-1) is a secretory proteoglycan comprising a mature polypeptide of 165 amino acids and a single dermatan sulfate. The aim of this study was to...  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号