首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4126篇
  免费   387篇
  国内免费   241篇
  4754篇
  2024年   5篇
  2023年   47篇
  2022年   126篇
  2021年   210篇
  2020年   123篇
  2019年   161篇
  2018年   176篇
  2017年   130篇
  2016年   172篇
  2015年   283篇
  2014年   287篇
  2013年   341篇
  2012年   358篇
  2011年   346篇
  2010年   206篇
  2009年   175篇
  2008年   235篇
  2007年   194篇
  2006年   152篇
  2005年   160篇
  2004年   114篇
  2003年   118篇
  2002年   88篇
  2001年   84篇
  2000年   69篇
  1999年   69篇
  1998年   42篇
  1997年   38篇
  1996年   37篇
  1995年   38篇
  1994年   27篇
  1993年   20篇
  1992年   24篇
  1991年   24篇
  1990年   17篇
  1989年   9篇
  1988年   11篇
  1987年   12篇
  1986年   7篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1959年   1篇
排序方式: 共有4754条查询结果,搜索用时 15 毫秒
991.
992.
993.
Primary lung cancer remains the leading cause of cancer death worldwide. Promoter hypermethylation is a major inactivation mechanism of tumor-related genes, and increasingly appears to play an important role in carcinogenesis. In the present study, we used quantitative methylation-specific PCR (Q-MSP) assays to analyze promoter hypermethylation of nine genes in a large cohort of well-characterized non-small cell lung cancer (NSCLC) and explore their associations with the clinicopathological features of tumor. We found that there were significant differences in methylation levels for six of nine gene promoters between cancerous and noncancerous lung tissues. More importantly, with 100% diagnostic specificity, high sensitivity, ranging from 44.9% to 84.1%, was found for each of the nine genes. Interestingly, promoter hypermethylation of most genes was closely associated with histologic type, which was more frequent in squamous cell carcinomas (SCC) than in adenocarcinomas (ADC). In addition, highly frequent concomitant methylation of multiple genes was found in NSCLC, particularly in SCC. Our data showed that multiple genes were aberrantly methylated in lung tumorigenesis, and that they were closely associated with certain clinicopathological features of NSCLC, particularly of the histologic type, suggesting that these hypermethylated genes could be potential biomarkers in early detection of NSCLC in high-risk individuals, as well as in evaluating the prognosis of NSCLC patients.  相似文献   
994.

Introduction

To understand better the risk of tuberculosis transmission with increasing delay in tuberculosis treatment, we undertook a retrospective cohort study in Shenzhen, China.

Methods

All pulmonary tuberculosis cases in the Shenzhen tuberculosis surveillance database from 1993–2010 were included. Sputum smear positivity and presence of pulmonary cavity were used as proxies for risk of tuberculosis transmission.

Results

Among 48,441pulmonary tuberculosis cases, 70% presented with symptoms of pulmonary TB, 62% were sputum smear positive, and 21% had a pulmonary cavity on chest x-ray. 95.3% of patients self-presented for evaluation of illness after a median 58 days of delay after symptoms began. The proportion presenting sputum smear positive (p<0.001) and with a pulmonary cavity (p<0.001) increased significantly with increasing duration of delay.

Conclusions

Delayed diagnosis and treatment of tuberculosis is associated with a significantly increased risk of pulmonary sputum smear positivity and pulmonary cavity. To decrease risk of transmission, treatment delay needs to be reduced further.  相似文献   
995.
Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially prominent in neural diseases. One of the effective ways to prevent the reactive oxygen species (ROS) mediated cellular injury is dietary or pharmaceutical augmentation of some free radical scavenger. Water-soluble amino-fullerene derivative is a novel compound that behaves as a free radical scavenger with excellent biocompatibility. In the present study, we synthesized a novel beta-alanine C(60) derivative. The product was characterized by FT-IR, (1)H NMR, (13)C NMR, LC-MS and elemental analysis. We investigated the protective effect on hydrogen peroxide-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. PC12 cells treated with hydrogen peroxide underwent apoptotic death determined by MTT, flow cytometry analysis and PI/Hoechst 33342 staining. Moreover, the scavenging ability of beta-alanine C(60) derivative to reactive oxygen species both in vivo and in vitro of PC12 cells was measured. The results suggest that beta-alanine C(60) derivative has the potential to prevent oxidative stress-induced cell death without evident toxicity. Hence, on the basis of the above-mentioned studies, we can hypothesize that the protective effect of beta-alanine C(60) derivative on H(2)O(2) induced apoptosis is related to their known scavenger activity toward ROS.  相似文献   
996.
The malate–aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate–aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD+ redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate–aspartate NADH shuttle activity and oxidative protection.  相似文献   
997.
Zhu H  Zhou B  Fan X  Lam TT  Wang J  Chen A  Chen X  Chen H  Webster RG  Webby R  Peiris JS  Smith DK  Guan Y 《Journal of virology》2011,85(20):10432-10439
Pigs are considered to be intermediate hosts and "mixing vessels," facilitating the genesis of pandemic influenza viruses, as demonstrated by the emergence of the 2009 H1N1 pandemic (pdm/09) virus. The prevalence and repeated introduction of the pdm/09 virus into pigs raises the possibility of generating novel swine influenza viruses with the potential to infect humans. To address this, an active influenza surveillance program was conducted with slaughtered pigs in abattoirs in southern China. Over 50% of the pigs tested were found to be seropositive for one or more H1 influenza viruses, most commonly pdm/09-like viruses. Out of 36 virus isolates detected, one group of novel reassortants had Eurasian avian-like swine H1N1 surface genes and pdm/09 internal genes. Animal experiments showed that this virus transmitted effectively from pig to pig and from pig to ferret, and it could also replicate in ex vivo human lung tissue. Immunization against the 2009 pandemic virus gave only partial protection to ferrets. The continuing prevalence of the pdm/09 virus in pigs could lead to the genesis of novel swine reassortant viruses with the potential to infect humans.  相似文献   
998.
A new indole derivative colletoindole A ( 1 ), along with two new indole derivatives ( 2 and 3 ) and one known compound acropyrone ( 4 ) were isolated from cultures of Colletotrichum tropicale SCSIO 41022 derived from a mangrove plant Kandelia candel. The structures of 1 – 4 were determined by analysis of NMR and MS data. The cytotoxicity of 1 , 2 and 4 , and the COX‐2 inhibitory activity of 1 and 2 were evaluated.  相似文献   
999.
The Gahai Lake wetland natural conservation area in northwestern China includes peatland that has been accumulating over hundreds of years and is seldom disturbed by industry. Bacteria and archaea in peat soil, which is a reservoir for carbon and water, may influence its ecological function. The objective of this study was to obtain a clearer understanding of peat microbial ecology and its relationship to the environmental conditions of this area. Hence, the microbial community of the peatland ecosystem was investigated by sequencing bacterial and archaeal DNA extracted from samples collected at different peat depths. Results showed that in all samples the dominant bacterial phyla were Proteobacteria (relative abundance 0.39 ± 0.12) and Chloroflexi (0.16 ± 0.09), while the dominant archaeal phyla were Miscellaneous Crenarchaeotic Group (MCG) (0.62 ± 0.21) and Euryarchaeota (0.27 ± 0.16). The diversity and microbial community structure at deeper depths (90 and 120 cm below the peat surface) significantly differ from that at shallower depths (10, 30 and 50 cm deep). In contrast to the shallow layers, the deeper layers became more abundant in the bacterial phyla Chloroflexi, Bacteroidetes, Atribacteria, Aminicenantes, Chlorobi, TA06, Caldiserica and Spirochaetae; and in the archaeal phyla MCG and Miscellaneous Euryarchaeotic Group (MEG). This study revealed a significant shift in microbial community in peat between 50 cm and 90 cm deep, as probably influenced by the oxygen supply at different depths. Furthermore, new insights into the microbial taxa were obtained, thus providing a baseline for future studies of this peat ecosystem.  相似文献   
1000.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair. DNA-PKcs has also been shown recently functioning in mitotic regulation. Here, we report that DNA-PKcs negatively regulates the stability of Cyclin B1 protein through facilitating its ubiquitination mediated by Cdh1 / E 3 ubiquitin ligase APC/C pathway. Loss of DNA-PKcs causes abnormal accumulation of Cyclin B1 protein. Cyclin B1 degradation is delayed in DNA-PKcs-deficient cells as result of attenuated ubiquitination. The impact of DNA-PKcs on Cyclin B1 stability relies on its kinase activity. Our study further reveals that DNA-PKcs interacts with APC/C core component APC2 and its co-activator Cdh1. The destruction of Cdh1 is accelerated in the absence of DNA-PKcs. Moreover, overexpression of exogenous Cdh1 can reverse the increase of Cyclin B1 protein in DNA-PKcs-deficient cells. Thus, DNA-PKcs, in addition to its direct role in DNA damage repair, functions in mitotic progression at least partially through regulating the stability of Cyclin B1 protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号