首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   5篇
  52篇
  2021年   1篇
  2020年   3篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1974年   1篇
  1972年   1篇
排序方式: 共有52条查询结果,搜索用时 0 毫秒
11.
Pig to human xenotransplantation is considered a possible solution to the prevailing chronic lack of human donor organs for allotransplantation. The Galalpha1,3Gal determinant is the major porcine xenogeneic epitope causing hyperacute rejection following human antibody binding and complement activation. In order to characterize the tissue distribution of Galalpha1,3Gal-containing and blood group- type glycosphingolipids in pig, acid and nonacid glycosphingolipids were isolated from the kidney, small intestine, spleen, salivary gland, liver, and heart of a single pig obtained from a semi-inbred strain homozygous at the SLA locus. Glycolipids were analyzed by thin-layer immunostaining using monoclonal antibodies, and following ceramide glycanase cleavage as permethylated oligosaccharides by gas chromatography, gas chromatography-mass spectrometry, and matrix- assisted laser desorption/ionization mass spectrometry. The kidney contained large amounts of Galalpha1,3Gal-containing penta- and hexasaccharides having carbohydrate sequences consistent with the Galalpha1,3nLc4and Galalpha1,3Lexstructures, respectively. The former structure was tentatively identified in all organs by GC/MS. The presence of extended Galalpha1,3Gal-terminated structures in the kidney and heart was suggested by antibody binding, and GC/MS indicated the presence of a Galalpha1,3nLc6structure in the heart. The kidney, spleen, and heart contained blood group H pentaglycosylceramides based on type 1 (H-5-1) and type 2 (H-5-2) chains, and H hexaglycosylceramides based on the type 4 chain (H-6-4). In the intestine H-5-1 and H-6-4 were expressed, in the salivary gland H-5-1 and H-5-2, whereas only the H-5-1 structure was identified in the liver. Blood group A structures were identified in the salivary gland and the heart by antibody binding and GC/MS, indicating an organ- specific expression of blood group AH antigens in the pig.   相似文献   
12.
The actin cytoskeleton has been implicated in endocytosis, yet few molecules that link these systems have been identified. Here, we have cloned and characterized mHip1R, a protein that is closely related to huntingtin interacting protein 1 (Hip1). These two proteins are mammalian homologues of Sla2p, an actin binding protein important for actin organization and endocytosis in yeast. Sequence alignments and secondary structure predictions verified that mHip1R belongs to the Sla2 protein family. Thus, mHip1R contains an NH(2)-terminal domain homologous to that implicated in Sla2p's endocytic function, three predicted coiled-coils, a leucine zipper, and a talin-like actin-binding domain at the COOH terminus. The talin-like domain of mHip1R binds to F-actin in vitro and colocalizes with F-actin in vivo, indicating that this activity has been conserved from yeast to mammals. mHip1R shows a punctate immunolocalization and is enriched at the cell cortex and in the perinuclear region. We concluded that the cortical localization represents endocytic compartments, because mHip1R colocalizes with clathrin, AP-2, and endocytosed transferrin, and because mHip1R fractionates biochemically with clathrin-coated vesicles. Time-lapse video microscopy of mHip1R-green fluorescence protein (GFP) revealed a blinking behavior similar to that reported for GFP-clathrin, and an actin-dependent inward movement of punctate structures from the cell periphery. These data show that mHip1R is a component of clathrin-coated pits and vesicles and suggest that it might link the endocytic machinery to the actin cytoskeleton.  相似文献   
13.
14.
Current information on the structure and function of motile tubular vacuoles in Pisolithus tinctorius and other fungi is reviewed. The use of fluorochromes to label the vacuole lumen is evaluated and observations on the structure and motility of vacuoles in P. tinctorius are differentiated from possible artifacts. The styryl dyes FM4-64 and MDY-64, used in yeast to demonstrate endocytosis, show little or no labeling of internal membranes in undamaged P. tinctorius cells. This agrees with our data showing that other probes for endocytosis such as Lucifer yellow CH are not taken up by hyphal tip cells. Overall, the observations do not support endocytosis in hyphal tips. It has been suggested that tubular vacuole systems carry out longitudinal transport, and evidence in favor of this hypothesis is evaluated. New data are presented to show that many of the large vacuoles in subapical cells are attached to the plasma membrane and are relatively immobile, while video sequences show movement of fluorochrome in pulses along a series of several large vacuoles, all interconnected via tubules. Tubular vacuoles from thick sections of hyphae processed under anhydrous conditions are shown by X-ray microanalysis to contain relatively high levels of P and K, as seen previously in the larger vacuoles. These results provide further evidence for a role of the tubular vacuoles in longitudinal transport of P. Copyright 1998 Academic Press.  相似文献   
15.
16.

Background  

Lyme disease, caused by Borrelia burgdorferi, affects a large number of people in both the USA and Europe. The mouse is a natural host for this spirochete and is widely used as a model system to study Lyme pathogenesis mechanisms. Since disease manifestations often depend upon the spirochete burden in a particular tissue, it is critical to accurately measure the bacterial number in infected tissues. The current methods either lack sensitivity and specificity (SYBR Green), or require independent analysis of samples in parallel to quantitate host and bacterial DNA (TaqMan). We have developed a novel molecular beacon-based convenient multiplex real-time quantitative PCR assay to identify and detect small numbers of B. burgdorferi in infected mouse tissues.  相似文献   
17.
The actin cytoskeleton has been implicated in endocytosis, yet few molecular links to the endocytic machinery have been established. Here we show that the mammalian F-actin-binding protein Abp1 (SH3P7/HIP-55) can functionally link the actin cytoskeleton to dynamin, a GTPase that functions in endocytosis. Abp1 binds directly to dynamin in vitro through its SH3 domain. Coimmunoprecipitation and colocalization studies demonstrated the in vivo relevance of this interaction. In neurons, mammalian Abp1 and dynamin colocalized at actin-rich sites proximal to the cell body during synaptogenesis. In fibroblasts, mAbp1 appeared at dynamin-rich sites of endocytosis upon growth factor stimulation. To test whether Abp1 functions in endocytosis, we overexpressed several Abp1 constructs in Cos-7 cells and assayed receptor-mediated endocytosis. While overexpression of Abp1's actin-binding modules did not interfere with endocytosis, overexpression of the SH3 domain led to a potent block of transferrin uptake. This implicates the Abp1/dynamin interaction in endocytic function. The endocytosis block was rescued by cooverexpression of dynamin. Since the addition of the actin-binding modules of Abp1 to the SH3 domain construct also fully restored endocytosis, Abp1 may support endocytosis by combining its SH3 domain interactions with cytoskeletal functions in response to signaling cascades converging on this linker protein.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号