首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   11篇
  250篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   10篇
  2013年   11篇
  2012年   13篇
  2011年   8篇
  2010年   12篇
  2009年   10篇
  2008年   11篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   9篇
  2003年   4篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   10篇
  1998年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   8篇
  1991年   10篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   10篇
  1978年   11篇
  1977年   4篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1969年   1篇
排序方式: 共有250条查询结果,搜索用时 15 毫秒
221.
The cDNA sequence encoding rabbit, mouse, and rat extracellular superoxide dismutase (EC-SOD) predicts that the protein contains five cysteine residues. Human EC-SOD contains an additional cysteine residue and folds into two forms with distinct disulfide bridge patterns. One form is enzymatically active (aEC-SOD), while the other is inactive (iEC-SOD). Due to the lack of the additional cysteine residue rabbit, mouse, and rat EC-SOD are unable to generate an inactive fold identical to human iEC-SOD. The amino acid sequences predict the formation of aEC-SOD only, but other folding variants cannot be ruled out based on the heterogeneity observed for human EC-SOD. To test this, we purified EC-SOD from rabbit plasma and determined the disulfide bridge pattern. The results revealed that the disulfide bridges are homogeneous and identical to human aEC-SOD. Four cysteine residues are involved in two intra-disulfide bonds while the C-terminal cysteine residue forms an intersubunit disulfide bond. No evidence for other folding variants was detected. These findings show that rabbit EC-SOD exists as an enzymatically active form only. The absence of iEC-SOD in rabbits suggests that the structure and aspects of the physiological function of EC-SOD differs significantly between rabbit and humans. This is an important notion to take when using these animals as model systems for oxidative stress.  相似文献   
222.
Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing   总被引:10,自引:0,他引:10  
ADAMTS-4 (a disintegrin and metalloprotease with thrombospondin motifs) is a multidomain metalloproteinase belonging to the reprolysin family. The enzyme cleaves aggrecan core protein at several sites. Here we report that the non-catalytic ancillary domains of the enzyme play a major role in regulating aggrecanase activity, with the C-terminal spacer domain masking the general proteolytic activity. Expressing a series of domain deletion mutants in mammalian cells and examining their aggrecan-degrading and general proteolytic activities, we found that full-length ADAMTS-4 of 70 kDa was the most effective aggrecanase, but it exhibited little activity against the Glu(373)-Ala(374) bond, the site originally characterized as a signature of aggrecanase activity. Little activity was detected against reduced and carboxymethylated transferrin (Cm-Tf), a general proteinase substrate. However, it readily cleaved the Glu(1480)-Gly(1481) bond in the chondroitin sulfate-rich region of aggrecan. Of the constructed mutants, the C-terminal spacer domain deletion mutant more effectively hydrolyzed both the Glu(373)-Ala(374) and Glu(1480)-Gly(1481) bonds. It also revealed new activities against Cm-Tf, fibromodulin, and decorin. Further deletion of the cysteine-rich domain reduced the aggrecanase activity by 80% but did not alter the activity against Cm-Tf or fibromodulin. Further removal of the thrombospondin type I domain drastically reduced all tested proteolytic activities, and very limited enzymatic activity was detected with the catalytic domain. Full-length ADAMTS-4 binds to pericellular and extracellular matrix, but deletion of the spacer domain releases the enzyme. ADAMTS-4 lacking the spacer domain has promiscuous substrate specificity considerably different from that previously reported for aggrecan core protein. Finding of ADAMTS-4 in the interleukin-1alpha-treated porcine articular cartilage primarily as a 46-kDa form suggests that it exhibits a broader substrate spectrum in the tissue than originally considered.  相似文献   
223.
Extracellular superoxide dismutase (EC-SOD) is a tetramer composed of either intact (Trp(1)-Ala(222)) or proteolytically cleaved (Trp(1)-Glu(209)) subunits. The latter form is processed intracellularly before secretion and lacks the C-terminal extracellular matrix (ECM)-binding region ((210)RKKRRRESECKAA(222)-COOH). We have previously suggested that the C-terminal processing of EC-SOD is either a one-step mechanism accomplished by a single intracellular endoproteolytic event cleaving the Glu(209)-Arg(210) peptide bond or a two-step mechanism involving two proteinases (Enghild, J. J., Thogersen, I. B., Oury, T. D., Valnickova, Z., Hojrup, P., and Crapo, J. D. (1999) J. Biol. Chem. 274, 14818-14822). In the latter case, an initial endoproteinase cleavage occurs somewhere in the region between Glu(209) and Glu(216). A carboxypeptidase specific for basic amino acid residues subsequently trims the remaining basic amino acid residues to Glu(209). A naturally occurring mutation of EC-SOD substituting Arg(213) for Gly enabled us to test these hypotheses. The mutation does not prevent proteolysis of the ECM-binding region but prevents a carboxypeptidase B-like enzyme from trimming residues beyond Gly(213). The R213G mutation is located in the ECM-binding region, and individuals carrying this mutation have an increased concentration of EC-SOD in the circulatory system. In this study, we purified the R213G EC-SOD variant from heterozygous or homozygous individuals and determined the C-terminal residue of the processed subunit to be Gly(213). This finding supports the two-step processing mechanism and indicates that the R213G mutation does not disturb the initial endoproteinase cleavage event but perturbs the subsequent trimming of the C terminus.  相似文献   
224.
The biosynthesis, processing, and secretion of parthormone and the effect of calcium on these processes were measured in dispersed porcine parthyroid cells incubated with [(35)S]methionine. Proparathormone was detected at 10 min, the earliest time measured, and was rapidly and apparently quantitatively converted to parathormone. The half-life of the prohomormone pool was 15 min. Secretion of parathormone was detected by 20 min. In pulse-chase experiments there was a period between 20 and 40 min during which the wave of newly-synthesized parathormone was secreted. After 40 min during little additional radioactive hormone was secreted, but dibutyryl cyclic AMP, an agent that can mobilize stored parathormone, when added to the incubation mixtures enhanced radioactive parathormone secretion but only after 60 min, although it increased net hormone secretion as determined by radioimmunoassay to the same extent at all times studied. When the ionized calcium concentration of the medium was lowered, more radioactive hormone was secreted at all times but the effect was greatest on that hormone that was synthesized less than 60 min previously ; however, net hormone secretion in contrast to radioactive hormone was enhanced equally at all intervals. These data could mean that the refractoriness to secretion of parathormone 40-60 min of age was related to maturation of secretory container preparatory to storage. Low calcium (0.5 mM) stimulated hormone secretion up to fivefold compared to high calcium (3.0 mM) but did not affect synthesis of parathormone or proparathormne or conversion of the latter to hormone. During processing at least 70 percent of the intracellular parathormone was lost, presumably through proteolysis and this degradation was greater at high calcium. These data have been interpreted in light of the concept that two secretable pools of parathormone exist within the parathyroid.  相似文献   
225.
Abstract RgpA and Kgp gingipains are non-covalent complexes of endoprotease catalytic and hemagglutinin-adhesin domains on the surface of Porphyromonas gingivalis. A motif conserved in each domain has been suggested to function as an oligomerization motif. We tested this hypothesis by mutating motif residues to hexahistidine or insertion of hexahistidine tag to disrupt the motif within the Kgp catalytic domain. All modifications led to the secretion of entire Kgp activity into the growth media, predominantly in a form without functional His-tag. This confirmed the role of the conserved motif in correct posttranslational proteolytic processing and assembly of the multidomain complexes.  相似文献   
226.
Evasion of killing by the complement system, a crucial part of innate immunity, is a key evolutionary strategy of many human pathogens. A major etiological agent of chronic periodontitis, the Gram-negative bacterium Porphyromonas gingivalis, produces a vast arsenal of virulence factors that compromise human defense mechanisms. One of these is peptidylarginine deiminase (PPAD), an enzyme unique to P. gingivalis among bacteria, which converts Arg residues in polypeptide chains into citrulline. Here, we report that PPAD citrullination of a critical C-terminal arginine of the anaphylatoxin C5a disabled the protein function. Treatment of C5a with PPAD in vitro resulted in decreased chemotaxis of human neutrophils and diminished calcium signaling in monocytic cell line U937 transfected with the C5a receptor (C5aR) and loaded with a fluorescent intracellular calcium probe: Fura-2 AM. Moreover, a low degree of citrullination of internal arginine residues by PPAD was also detected using mass spectrometry. Further, after treatment of C5 with outer membrane vesicles naturally shed by P. gingivalis, we observed generation of C5a totally citrullinated at the C-terminal Arg-74 residue (Arg74Cit). In stark contrast, only native C5a was detected after treatment with PPAD-null outer membrane vesicles. Our study suggests reduced antibacterial and proinflammatory capacity of citrullinated C5a, achieved via lower level of chemotactic potential of the modified molecule, and weaker cell activation. In the context of previous studies, which showed crosstalk between C5aR and Toll-like receptors, as well as enhanced arthritis development in mice infected with PPAD-expressing P. gingivalis, our findings support a crucial role of PPAD in the virulence of P. gingivalis.  相似文献   
227.

Background

Despite the enormous importance of diatoms in aquatic ecosystems and their broad industrial potential, little is known about their life cycle control. Diatoms typically inhabit rapidly changing and unstable environments, suggesting that cell cycle regulation in diatoms must have evolved to adequately integrate various environmental signals. The recent genome sequencing of Thalassiosira pseudonana and Phaeodactylum tricornutum allows us to explore the molecular conservation of cell cycle regulation in diatoms.

Results

By profile-based annotation of cell cycle genes, counterparts of conserved as well as new regulators were identified in T. pseudonana and P. tricornutum. In particular, the cyclin gene family was found to be expanded extensively compared to that of other eukaryotes and a novel type of cyclins was discovered, the diatom-specific cyclins. We established a synchronization method for P. tricornutum that enabled assignment of the different annotated genes to specific cell cycle phase transitions. The diatom-specific cyclins are predominantly expressed at the G1-to-S transition and some respond to phosphate availability, hinting at a role in connecting cell division to environmental stimuli.

Conclusion

The discovery of highly conserved and new cell cycle regulators suggests the evolution of unique control mechanisms for diatom cell division, probably contributing to their ability to adapt and survive under highly fluctuating environmental conditions.  相似文献   
228.

Background  

During and following myocardial ischemia, glucose oxidation rates are low and fatty acids dominate as a source of oxidative metabolism. This metabolic phenotype is associated with contractile dysfunction during reperfusion. To determine the mechanism of this reliance on fatty acid oxidation as a source of ATP generation, a functional proteomics approach was utilized.  相似文献   
229.
Tissue inhibitor of metalloproteinases-3 (TIMP-3) plays a key role in regulating extracellular matrix turnover by inhibiting matrix metalloproteinases (MMPs), adamalysins (ADAMs), and adamalysins with thrombospondin motifs (ADAMTSs). We demonstrate that levels of this physiologically important inhibitor can be regulated post-translationally by endocytosis. TIMP-3 was endocytosed and degraded by a number of cell types including chondrocytes, fibroblasts, and monocytes, and we found that the endocytic receptor low density lipoprotein receptor-related protein-1 (LRP-1) plays a major role in TIMP-3 internalization. However, the cellular uptake of TIMP-3 significantly slowed down after 10 h due to shedding of LRP-1 from the cell surface and formation of soluble LRP-1 (sLRP-1)-TIMP-3 complexes. Addition of TIMP-3 to HTB94 human chondrosarcoma cells increased the release of sLRP-1 fragments of 500, 215, 160, and 110 kDa into the medium in a concentration-dependent manner, and all of these fragments were able to bind to TIMP-3. TIMP-3 bound to sLRP-1, which was resistant to endocytosis, retained its inhibitory activity against metalloproteinases. Extracellular levels of sLRP-1 can thus increase the half-life of TIMP-3 in the extracellular space, controlling the bioavailability of TIMP-3 to inhibit metalloproteinases.  相似文献   
230.
The use of antimicrobial peptides (AMPs) synthesized by bacteria (bacteriocins) is an alternative for combating multidrug resistant bacterial strains and their production by recombinant route is a viable option for their mass production. The bacteriocin E-760 isolated from the genus Enterococcus sp. has been shown to possess inhibitory activity against Gram-negative and Gram-positive bacteria. In this study, the expression of a chimeric protein coding for E-760 in the nucleus of C. reinhardtii was evaluated, as well as, its antibacterial activity. The synthetic gene E-760S was inserted into the genome of C. reinhardtii using Agrobacterium tumefaciens. A transgenic line was identified in TAP medium with hygromycin and also by PCR. The increment in the culture medium temperature of the transgenic strain at 35 °C for 10 minutes, increased the production level of the recombinant protein from 0.14 (Noninduced culture, NIC) to 0.36% (Induced culture, IC) of total soluble proteins (TSP); this was quantified by an ELISA assay. Recombinant E-760 possesses activity against Staphylococcus aureus in 0.34 U log, Streptococcus agalactiae in 0.48 U log, Enterococcus faecium in 0.36 U log, Pseudomonas aeruginosa in 2 U log and for Klebsiella pneumoniae, the activity was 0.07 U log. These results demonstrate that the nucleus transformation of C. reinhardtii can function as a stable expression platform for the production of the synthetic gene E-760 and it can potentially be used as an antibacterial agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号