首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   11篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   10篇
  2013年   11篇
  2012年   13篇
  2011年   8篇
  2010年   12篇
  2009年   10篇
  2008年   11篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   9篇
  2003年   4篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   10篇
  1998年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   8篇
  1991年   10篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   10篇
  1978年   11篇
  1977年   4篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1969年   1篇
排序方式: 共有250条查询结果,搜索用时 31 毫秒
141.
Until recently, extracellular functional bacterial amyloid (FuBA) has been detected and characterized in only a few bacterial species, including Escherichia coli, Salmonella, and the gram-positive organism Streptomyces coelicolor. Here we probed gram-positive bacteria with conformationally specific antibodies and revealed the existence of FuBA in 12 of 14 examined mycolata species, as well as six other distantly related species examined belonging to the phyla Actinobacteria and Firmicutes. Most of the bacteria produced extracellular fimbriae, sometimes copious amounts of them, and in two cases large extracellular fibrils were also produced. In three cases, FuBA was revealed only after extensive removal of extracellular material by saponification, indicating that there is integrated attachment within the cellular envelope. Spores of species in the genera Streptomyces, Bacillus, and Nocardia were all coated with amyloids. FuBA was purified from Gordonia amarae (from the cell envelope) and Geodermatophilus obscurus, and they had the morphology, tinctorial properties, and β-rich structure typical of amyloid. The presence of approximately 9-nm-wide amyloids in the cell envelope of G. amarae was visualized by transmission electron microscopy analysis. We conclude that amyloid is widespread among gram-positive bacteria and may in many species constitute a hitherto overlooked integral part of the spore and the cellular envelope.The gram-positive bacterial group mycolata (mycolic acid-containing actinomycetes) comprises a number of genera with disease-causing species, including the severely pathogenic organisms Corynebacterium diphtheriae and Mycobacterium tuberculosis. The latter species is the leading cause of death due to a single infectious agent globally (17). Furthermore, mycolata have great environmental and economical impact, since several species (e.g., Gordonia spp.) may lead to unwanted foaming in wastewater treatment plants (10, 27, 43). M. tuberculosis was recently shown to use long entangled pili (MTP) to adhere to endothelium, eventually invading and infecting human and animal tissue (1). MTP''s morphology and tinctorial properties are very similar to those of the amyloid-like curli fibrils found in Escherichia coli and Salmonella species (7), although it has not been determined whether they contain the characteristic cross-β structure with β-strands perpendicular to the long fibril axis (44). In higher organisms, amyloid occurs mainly as an aberrant product of protein misfolding in, e.g., neurodegeneration and systemic amyloidosis, but bacteria are adept at turning amyloid to good use. In addition to the two bacteria mentioned above, functional bacterial amyloid (FuBA) has also been reported for streptomycetes (8) and xanthomonads (35). These examples are only the tip of the iceberg. Our recent in situ studies using WO2 antibodies specific for the amyloid conformation (36) in conjunction with 16S rRNA-targeted oligonucleotide probes for identification of the microbes revealed that amyloid-like adhesins are widespread in many phyla in environmental biofilms (29). In view of the occurrence of potential amyloid-like fibrils in one species belonging to the mycolata and the observed link between infection by a mycolata genus (Nocardia) and neurodegenerative Parkinson''s disease (13, 25, 26, 47), we have investigated this group of bacteria more closely for the presence of amyloid. Here we show that 12 of 14 different species of mycolata, as well as 6 of 6 other gram-positive bacteria, harbor amyloid. Furthermore, in some cases the amyloid can be visualized only after harsh saponification procedures which remove surrounding lipid molecules, indicating that the amyloid is deeply embedded in the cell envelope. Thus, amyloid may play a hitherto unappreciated central role in the composition of the bacterial envelope in many gram-positive bacteria.  相似文献   
142.
Catabolic insufficiency in humans leads to the gradual accumulation of a number of pathogenic compounds associated with age-related diseases, including atherosclerosis, Alzheimer's disease, and macular degeneration. Removal of these compounds is a widely researched therapeutic option, but the use of antibodies and endogenous human enzymes has failed to produce effective treatments, and may pose risks to cellular homeostasis. Another alternative is "medical bioremediation," the use of microbial enzymes to augment missing catabolic functions. The microbial genetic diversity in most natural environments provides a resource that can be mined for enzymes capable of degrading just about any energy-rich organic compound. This review discusses targets for biodegradation, the identification of candidate microbial enzymes, and enzyme-delivery methods.  相似文献   
143.
We have previously reported that thrombin-activatable fibrinolysis inhibitor (TAFI) exhibits intrinsic proteolytic activity toward large peptides. The structural basis for this observation was clarified by the crystal structures of human and bovine TAFI. These structures evinced a significant rotation of the pro-domain away from the catalytic moiety when compared with other pro-carboxypeptidases, thus enabling access of large peptide substrates to the active site cleft. Here, we further investigated the flexible nature of the pro-domain and demonstrated that TAFI forms productive complexes with protein carboxypeptidase inhibitors from potato, leech, and tick (PCI, LCI, and TCI, respectively). We determined the crystal structure of the bovine TAFI-TCI complex, revealing that the pro-domain was completely displaced from the position observed in the TAFI structure. It protruded into the bulk solvent and was disordered, whereas TCI occupied the position previously held by the pro-domain. The authentic nature of the presently studied TAFI-inhibitor complexes was supported by the trimming of the C-terminal residues from the three inhibitors upon complex formation. This finding suggests that the inhibitors interact with the active site of TAFI in a substrate-like manner. Taken together, these data show for the first time that TAFI is able to form a bona fide complex with protein carboxypeptidase inhibitors. This underlines the unusually flexible nature of the pro-domain and implies a possible mechanism for regulation of TAFI intrinsic proteolytic activity in vivo.  相似文献   
144.
The heavy chain (HC) subunits of the bikunin proteins are covalently attached to a single chondroitin sulfate (CS) chain originating from bikunin and can be transferred to different hyaluronan (HA) molecules by TSG-6/HC2. In the present study, we demonstrate that HCs transferred to HA may function as HC donors in subsequent transfer reactions, and we show that the CS of bikunin may serve as an HC acceptor, analogous to HA. Our data suggest that TSG-6/HC2 link HCs randomly on the CS chain of bikunin, in contrast to the ordered attachment observed during the biosynthesis. Moreover, the results show that the transfer activity is indifferent to the new HC position, and the relocated HCs are thus prone to further TSG-6/HC2-induced transfer reactions. The data suggest that HCs may be transferred directly from HA to HA without the involvement of the bikunin CS chain. The results demonstrate reversibility of the interactions between HCs and glycosaminoglycans and suggest that a dynamic shuffling of the HCs occur in vivo.  相似文献   
145.
146.
The bikunin proteins are composed of heavy chains (HCs) covalently linked to a chondroitin sulfate chain originating from Ser-10 of bikunin. Tumor necrosis factor stimulated gene-6 protein (TSG-6)/heavy chain 2 (HC2) cleaves this unique cross-link and transfers the HCs to hyaluronan and other glycosaminoglycans via a covalent HC•TSG-6 intermediate. In the present study, we have investigated if this reaction is evolutionary conserved based on the hypothesis that it is of fundamental importance. The results revealed that plasma/serum samples from mammal, bird, and reptile were able to form TSG-6 complexes suggesting the presence of proteins with the same function as the human bikunin proteins. To substantiate this, the complex forming protein from Gallus gallus (Gg) plasma was purified and identified as a Gg homolog of human HC2•bikunin. In addition, Gg pre-α-inhibitor and smaller amount of high molecular weight forms composed of bikunin and two HCs were purified. Like the human bikunin proteins, the purified Gg proteins were all stabilized by a protein–glycosaminoglycan–protein cross-link, i.e. the HCs were covalently attached to a chondroitin sulfate originating from bikunin. Furthermore, the complex formed between Gg HC2•bikunin and human TSG-6 appeared to be identical to that of the human proteins. Akin to human, Gg HC2 was further transferred to hyaluronan when present, and when incubated in vitro, Gg pre-α-inhibitor and TSG-6, failed to form the intermediate covalent complex, essential for HC transfer. Significantly, Gg HC2, analogous to human HC2, promoted complex formation between human HC3 and human TSG-6, substantiating the evolutionary conservation of these interactions. The present study demonstrates that the unique interactions between bikunin proteins, glycosaminoglycans, and TSG-6 are evolutionary conserved, emphasizing the physiological importance of the TSG-6/HC2-mediated HC-transfer reaction. In addition, the data show that the evolution of HC transfer is likely to predate the role of HC·HA complexes in female fertility and thus has evolved in the context of inflammation rather than fertility.  相似文献   
147.
The receptor for advanced glycation end-products (RAGE) has been implicated in numerous disease processes including: atherosclerosis, diabetic nephropathy, impaired wound healing and neuropathy to name a few. Treatment of animals with a soluble isoform of the receptor (sRAGE) has been shown to prevent and even reverse many disease processes. Isolating large quantities of pure sRAGE for in vitro and in vivo studies has hindered its development as a therapeutic strategy in other RAGE mediated diseases that require long-term therapy. This article provides an improvement in both yield and detail of a previously published method to obtain 10mg of pure, endotoxin free sRAGE from 65 g of lung tissue.  相似文献   
148.
Cancer-induced alterations of protein glycosylations are well-known phenomena. Hence, the glycoprofile of certain glycoproteins can potentially be used as biomarkers for early diagnosis. However, there are a substantial number of candidates and the techniques for measuring their biomarker potential are limited, calling for new methods. Here, we have investigated the cancer marker potential of the glycoprofile of tissue inhibitor of metalloproteinase-1 (TIMP-1) using a method for comparative glycoprofiling. Glycoprofiles were obtained from plasma TIMP-1 of five healthy donors and five colorectal cancer (CRC) patients showing increased amounts of TIMP-1. Furthermore, the TIMP-1 glycoprofiles of media from two colon cancer cell lines (CCC) and a prostate cancer cell line were determined as disease references. TIMP-1 was purified from IgG-depleted samples using immuno affinity and gel electrophoresis and the glycoprofiling was performed using glycopeptide enrichment and mass spectrometry. The heterogeneous glycoprofiles of TIMP-1 were found to be highly conserved among the healthy donors, proving an ideal candidate marker and showed high reproducibility of the method. Numerous CCC-specific TIMP-1 glycans were observed illustrating cancer-induced changes. Unexpectedly, quantitation revealed that the glycoprofiles of healthy donors and CRC patients varied minimally. Considering the increased CRC TIMP-1 levels and the observed CCC-specific glycans, the lack of variation indicates that the increased amount of CRC TIMP-1 is not a direct product of the cancer cells. Hence, the TIMP-1 glycoprofile holds no biomarker potential for CRC when using plasma as the sample origin. This study clearly illustrates that the technique is capable of performing individualised site-specific glycan analysis and representing a new tool for biomarker investigation of low-abundant glycoproteins.  相似文献   
149.
Tumor necrosis factor-stimulated gene-6 protein (TSG-6) is involved in the transfer of heavy chains (HCs) from inter-alpha-inhibitor (IalphaI), pre-alpha-inhibitor, and as shown here HC2.bikunin to hyaluronan through the formation of covalent HC.TSG-6 intermediates. In contrast to IalphaI and HC2.bikunin, pre-alpha-inhibitor does not form a covalent complex in vitro using purified proteins but needs the presence of another factor (Rugg, M. S., Willis, A. C., Mukhopadhyay, D., Hascall, V. C., Fries, E., Fül?p, C., Milner, C. M., and Day, A. J. (2005) J. Biol. Chem. 280, 25674-25686). In the present study we purified the required component from human plasma and identified it as HC2. Proteins containing HC2 including IalphaI, HC2.bikunin, and free HC2 promoted the formation of HC3.TSG-6 and subsequently HC3.hyaluronan complexes. HC1 or HC3 did not possess this activity. The presented data reveal that both HC2 and TSG-6 are required for the transesterification reactions to occur.  相似文献   
150.
The amino acid sequence of the monomeric alpha-macroglobulin (alphaM) from the American bullfrog, Rana catesbiana, was determined. The mature protein consisted of 1469 amino acid residues and shared sequence identity with other members of the alphaM family of protein. The central portion of the frog monomeric alphaM contained Cys residues positioned analogously to the Cys residues in human alpha(2)-macroglobulin (alpha(2)M), known to be involved in disulfide bridges. Additionally, the frog monomeric alphaM contained six Cys residues in a approximately 60 residue COOH-terminal extension not present in previously characterized alphaMs. The spacing of the Cys residues and the overall sequence identity of this COOH-terminal extension were consistent with a trefoil motif. This is the first time a member of the trefoil factor family has been identified in the circulatory system. The "bait region" was located between Arg(675)-Lys(685) and contained mainly basic amino acid residues. The COOH-terminal receptor-binding domain was not exposed prior to proteolysis of this highly susceptible region. The proximity of the receptor-binding and trefoil domains implied that the trefoil domain is similarly concealed before bait region cleavage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号