首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   11篇
  250篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   10篇
  2013年   11篇
  2012年   13篇
  2011年   8篇
  2010年   12篇
  2009年   10篇
  2008年   11篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   9篇
  2003年   4篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   10篇
  1998年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   8篇
  1991年   10篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   10篇
  1978年   11篇
  1977年   4篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1969年   1篇
排序方式: 共有250条查询结果,搜索用时 0 毫秒
101.
Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg2+ or Mn2+, but not Ca2+, induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg2+ found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor.  相似文献   
102.
103.
IalphaI and TSG-6 interact to form a covalent bond between the C-terminal Asp alpha-carbon of an IalphaI heavy chain (HC) and an unknown component of TSG-6. This event disrupts the protein-glycosaminoglycan-protein (PGP) cross-link and dissociates IalphaI. In simple terms the interaction involves 5 components: (i) the IalphaI HCs, (ii) bikunin, (iii) chondroitin sulfate chain, (iv) TSG-6, and (v) divalent cations. To understand the molecular mechanism of complex formation, the effect of these were separately examined. The data show that although the mature covalent cross-link between the HCs and TSG-6 only involves the C-terminal Asp residue, the native fold of both IalphaI and TSG-6 was essential for the reaction to occur. Similarly, complex formation was prevented if the chondroitin sulfate chain was cleaved, releasing bikunin but maintaining the HC1 and HC2 PGP cross-links. In contrast, releasing the majority of the bikunin protein moiety by limited proteolysis did not prevent complex formation. An analysis of the divalent-cation requirements revealed two distinct interactions between IalphaI and TSG-6: (i) a noncovalent manganese, magnesium, or calcium-independent interaction between TSG-6 and the chondroitin sulfate chain (Kd 180 nM) and (ii) a covalent manganese, magnesium, or calcium-dependent interaction generating HC1 x TSG-6, HC2 x TSG-6, and high molecular weight (HMW) IalphaI. Significantly, both free TSG-6 and HC x TSG-6 complexes were able to bind the chondroitin sulfate chain suggesting that the sites on TSG-6 were distinct. On the basis of these findings, we propose a two-step reaction mechanism involving two putative binding sites. Initially, a cation-independent interaction between TSG-6 and the chondroitin sulfate chain is formed at site 1. Subsequently, a cation-dependent transesterification occurs, generating the covalent HC x TSG-6 cross-link at another site, site 2.  相似文献   
104.
Human extracellular superoxide dismutase (EC-SOD) is involved in the defence against oxidative stress induced by the superoxide radical. The protein is a homotetramer stabilised by hydrophobic interactions within the N-terminal region. During the purification of EC-SOD from human aorta, we noticed that material with high affinity for heparin-Sepharose formed not only a tetramer but also an octamer. Analysis of the thermodynamic stability of the octamer suggested that the C-terminal region is involved in formation of the quaternary structure. In addition, we show that the octamer is composed of both aEC-SOD and iEC-SOD folding variants. The presence of the EC-SOD octamer with high affinity may represent a way to influence the local concentration of EC-SOD to protect tissues specifically sensitive to oxidative damage.  相似文献   
105.
Many small cationic peptides, which are unstructured in aqueous solution, have antimicrobial properties. These properties are assumed to be linked to their ability to permeabilize bacterial membranes, accompanied by the transition to an α-helical folding state. Here we show that there is no direct link between folding of the antimicrobial peptide Novicidin (Nc) and its membrane permeabilization. N-terminal acylation with C8–C16 alkyl chains and the inclusion of anionic lipids both increase Nc's ability to form α-helical structure in the presence of vesicles. Nevertheless, both acylation and anionic lipids reduce the extent of permeabilization of these vesicles and lead to slower permeabilization kinetics. Furthermore, acylation significantly decreases antimicrobial activity. Although acyl chains of increasing length also increase the tendency of the peptides to aggregate in solution, this cannot rationalize our results since permeabilization and antimicrobial activities are observed well below concentrations where aggregation occurs. This suggests that significant induction of α-helical structure is not a prerequisite for membrane perturbation in this class of antimicrobial peptides. Our data suggests that for Nc, induction of α-helical structure may inhibit rather than facilitate membrane disruption, and that a more peripheral interaction may be the most efficient permeabilization mechanism. Furthermore, acylation leads to a deeper embedding in the membrane, which could lead to an anti-permeabilizing “plugging” effect.  相似文献   
106.
Mutations in the human TGFBI gene encoding TGFBIp have been linked to protein deposits in the cornea leading to visual impairment. The protein consists of an N-terminal Cys-rich EMI domain and four consecutive fasciclin 1 (FAS1) domains. We have compared the stabilities of wild-type (WT) human TGFBIp and six mutants known to produce phenotypically distinct deposits in the cornea. Amino acid substitutions in the first FAS1 (FAS1-1) domain (R124H, R124L, and R124C) did not alter the stability. However, substitutions within the fourth FAS1 (FAS1-4) domain (A546T, R555Q, and R555W) affected the overall stability of intact TGFBIp revealing the following stability ranking R555W>WT>R555Q>A546T. Significantly, the stability ranking of the isolated FAS1-4 domains mirrored the behavior of the intact protein. In addition, it was linked to the aggregation propensity as the least stable mutant (A546T) forms amyloid fibrils while the more stable variants generate non-amyloid amorphous deposits in vivo. Significantly, the data suggested that both an increase and a decrease in the stability of FAS1-4 may unleash a disease mechanism. In contrast, amino acid substitutions in FAS1-1 did not affect the stability of the intact TGFBIp suggesting that molecular the mechanism of disease differs depending on the FAS1 domain carrying the mutation.  相似文献   
107.
108.
109.
110.
A multivariate morphometric study of the genus Pyrus in south-west Europe and North Africa shows that five species may be recognized in the area: P. bourgaeana Decne., P. communis L., P. cordata Dew., P. spinosa Forssk, and P. nivalis Jacq. Some valuable characters for identification of these species are proposed. In particular the width of fruit peduncle, petal size, leaf width and petiole length served to discriminate the taxa. Several names such as P. gharbiona Trab., P. cossonii Rehder (|M= P. longipes Balansa ex Coss. & Durieu) and P. boisseriana Buhse, are regarded as synonyms of P. cordata , while P. marnormis Trab. of P. bourgaeana. Consequently a check-list and a key to these species are provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号