首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   692篇
  免费   57篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   9篇
  2017年   13篇
  2016年   9篇
  2015年   28篇
  2014年   36篇
  2013年   36篇
  2012年   48篇
  2011年   32篇
  2010年   29篇
  2009年   16篇
  2008年   40篇
  2007年   35篇
  2006年   25篇
  2005年   22篇
  2004年   30篇
  2003年   18篇
  2002年   25篇
  2001年   28篇
  2000年   23篇
  1999年   17篇
  1998年   4篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   13篇
  1991年   12篇
  1990年   15篇
  1989年   11篇
  1988年   8篇
  1987年   10篇
  1986年   9篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1975年   4篇
  1974年   7篇
  1973年   6篇
  1972年   5篇
  1971年   4篇
  1970年   4篇
  1969年   9篇
  1968年   6篇
  1966年   4篇
  1959年   6篇
排序方式: 共有749条查询结果,搜索用时 78 毫秒
91.
92.
A biostratigraphic and systematic study based on belemnites collected along with ammonites was performed on four sections in the Subalpine Basin (SE France): Lac du Castillon and La Baume (Castellane area), Galabrun and Grand Lara (Gap area). The specimens, originating from hemi-pelagic marl-limestone alternations in the lower part of the “Calcaires à Zoophycos” Formation, are dated from Middle Aalenian (Murchisonae Zone) to Lower Bajocian (Humphriesianum Zone). Five belemnite taxa (Megateuthis elliptica, Holcobelus munieri, Htrauthi, Pachybelemnopsis roettingensis, Hibolithes sp.) have been identified, and two more taxa are reported in an open nomenclature (Belemnitida incertae sedis sp. 1 and sp. 2). The biostratigraphic range of the belemnite fauna is established. The new findings contribute to a more detailed understanding of the paleobiogeography of holcobelid belemnites that flourished at the northern margin of the Tethys Ocean and formed a distinct sub-Mediterranean fauna. The association herein described is similar to the fauna of the Calabro-Peloritani Arc (Calabria, Italy), a further hint for the supposed paleogeographic position of the latter during the Middle Jurassic.  相似文献   
93.
Hudson DM  Kim LS  Weis M  Cohn DH  Eyre DR 《Biochemistry》2012,51(12):2417-2424
Proline residues in collagens are extensively hydroxylated post-translationally. A rare form of this modification, (3S,2S)-l-hydroxyproline (3Hyp), remains without a clear function. Disruption of the enzyme complex responsible for prolyl 3-hydroxylation results in severe forms of recessive osteogenesis imperfecta (OI). These OI types exhibit a loss of or reduction in the level of 3-hydroxylation at two proline residues, α1(I) Pro986 and α2(I) Pro707. Whether the resulting brittle bone phenotype is caused by the lack of the 3-hydroxyl addition or by another function of the enzyme complex is unknown. We have speculated that the most efficient mechanism for explaining the chemistry of collagen intermolecular cross-linking is for pairs of collagen molecules in register to be the subunit that assembles into fibrils. In this concept, the exposed hydroxyls from 3Hyp are positioned within mutually interactive binding motifs on adjacent collagen molecules that contribute through hydrogen bonding to the process of fibril supramolecular assembly. Here we report observations on the physical binding properties of 3Hyp in collagen chains from experiments designed to explore the potential for interaction using synthetic collagen-like peptides containing 3Hyp. Evidence of self-association was observed between a synthetic peptide containing 3Hyp and the CB6 domain of the α1(I) chain, which contains the single fully 3-hydroxylated proline. Using collagen from a case of severe recessive OI with a CRTAP defect, in which Pro986 was minimally 3-hydroxylated, such binding was not observed. Further study of the role of 3Hyp in supramolecular assembly is warranted for understanding the evolution of tissue-specific variations in collagen fibril organization.  相似文献   
94.

Background

An imprecise quantitative sense for the oscillating levels of proteins and their modifications, interactions, and translocations as a function of the cell cycle is fundamentally important for a cartoon/narrative understanding for how the cell cycle works. Mathematical modeling of the same cartoon/narrative models would be greatly enhanced by an open-ended methodology providing precise quantification of many proteins and their modifications, etc. Here we present methodology that fulfills these features.

Methodology

Multiparametric flow cytometry was performed on Molt4 cells to measure cyclins A2 and B1, phospho-S10-histone H3, DNA content, and light scatter (cell size). The resulting 5 dimensional data were analyzed as a series of bivariate plots to isolate the data as segments of an N-dimensional “worm” through the data space. Sequential, unidirectional regions of the data were used to assemble expression profiles for each parameter as a function of cell frequency.

Results

Analysis of synthesized data in which the true values where known validated the approach. Triplicate experiments demonstrated exceptional reproducibility. Comparison of three triplicate experiments stained by two methods (single cyclin or dual cyclin measurements with common DNA and phospho-histone H3 measurements) supported the feasibility of combining an unlimited number of epitopes through this methodology. The sequential degradations of cyclin A2 followed by cyclin B1 followed by de-phosphorylation of histone H3 were precisely mapped. Finally, a two phase expression rate during interphase for each cyclin was robustly identified.

Conclusions

Very precise, correlated expression profiles for important cell cycle regulating and regulated proteins and their modifications can be produced, limited only by the number of available high-quality antibodies. These profiles can be assembled into large information libraries for calibration and validation of mathematical models.  相似文献   
95.
VEGF-induced vascular permeability is mediated by FAK   总被引:1,自引:0,他引:1  
Endothelial cells (ECs) form cell-cell adhesive junctional structures maintaining vascular integrity. This barrier is dynamically regulated by vascular endothelial growth factor (VEGF) receptor signaling. We created an inducible knockin mouse model to study the contribution of the integrin-associated focal adhesion tyrosine kinase (FAK) signaling on vascular function. Here we show that genetic or pharmacological FAK inhibition in ECs prevents VEGF-stimulated permeability downstream of VEGF receptor or Src tyrosine kinase activation in vivo. VEGF promotes tension-independent FAK activation, rapid FAK localization to cell-cell junctions, binding of the FAK FERM domain to the vascular endothelial cadherin (VE-cadherin) cytoplasmic tail, and direct FAK phosphorylation of β-catenin at tyrosine-142 (Y142) facilitating VE-cadherin-β-catenin dissociation and EC junctional breakdown. Kinase inhibited FAK is in a closed conformation that prevents VE-cadherin association and limits VEGF-stimulated β-catenin Y142 phosphorylation. Our studies establish a role for FAK as an essential signaling switch within ECs regulating adherens junction dynamics.  相似文献   
96.
Memory performance in everyday life is often far from perfect and therefore needs to be monitored and controlled by metamemory evaluations, such as judgments of learning (JOLs). JOLs support monitoring for goal-directed modification of learning. Behavioral studies suggested retrieval processes as providing a basis for JOLs. Previous functional imaging research on JOLs found a dissociation between processes underlying memory prediction, located in the medial prefrontal cortex (mPFC), and actual encoding success, located in the medial temporal lobe. However, JOL-specific neural correlates could not be identified unequivocally, since JOLs were given simultaneously with encoding. Here, we aimed to identify the neurocognitive basis of JOLs, i.e., the cognitive processes and neural correlates of JOL, separate from initial encoding. Using functional magnetic resonance imaging (fMRI), we implemented a face-name paired associative design. In general, we found that actual memory success was associated with increased brain activation of the hippocampi bilaterally, whereas predicted memory success was accompanied by increased activation in mPFC, orbital frontal and anterior cingulate cortices. Masking brain activation during predicted memory success with activation during retrieval success revealed BOLD increases of the mPFC. Our findings indicate that JOLs actually incorporate retrieval processes.  相似文献   
97.
The human disease Hermansky-Pudlak syndrome results from defective biogenesis of lysosome-related organelles (LROs) and can be caused by mutations in subunits of the BLOC-1 complex. Here we show that C. elegans glo-2 and snpn-1, despite relatively low levels of amino acid identity, encode Pallidin and Snapin BLOC-1 subunit homologues, respectively. BLOC-1 subunit interactions involving Pallidin and Snapin were conserved for GLO-2 and SNPN-1. Mutations in glo-2 and snpn-1,or RNAi targeting 5 other BLOC-1 subunit homologues in a genetic background sensitized for glo-2 function, led to defects in the biogenesis of lysosome-related gut granules. These results indicate that the BLOC-1 complex is conserved in C. elegans. To address the function of C. elegans BLOC-1, we assessed the intracellular sorting of CDF-2::GFP, LMP-1, and PGP-2 to gut granules. We validated their utility by analyzing their mislocalization in intestinal cells lacking the function of AP-3, which participates in an evolutionarily conserved sorting pathway to LROs. BLOC-1(-) intestinal cells missorted gut granule cargo to the plasma membrane and conventional lysosomes and did not have obviously altered function or morphology of organelles composing the conventional lysosome protein sorting pathway. Double mutant analysis and comparison of AP-3(-) and BLOC-1(-) phenotypes revealed that BLOC-1 has some functions independent of the AP-3 adaptor complex in trafficking to gut granules. We discuss similarities and differences of BLOC-1 activity in the biogenesis of gut granules as compared to mammalian melanosomes, where BLOC-1 has been most extensively studied for its role in sorting to LROs. Our work opens up the opportunity to address the function of this poorly understood complex in cell and organismal physiology using the genetic approaches available in C. elegans.  相似文献   
98.
99.
Apical actomyosin activity in animal epithelial cells influences tissue morphology and drives morphogenetic movements during development. The molecular mechanisms leading to myosin II accumulation at the apical membrane and its exclusion from other membranes are poorly understood. We show that in the nonmetazoan Dictyostelium discoideum, myosin II localizes apically in tip epithelial cells that surround the stalk, and constriction of this epithelial tube is required for proper morphogenesis. IQGAP1 and its binding partner cortexillin I function downstream of α- and β-catenin to exclude myosin II from the basolateral cortex and promote apical accumulation of myosin II. Deletion of IQGAP1 or cortexillin compromises epithelial morphogenesis without affecting cell polarity. These results reveal that apical localization of myosin II is a conserved morphogenetic mechanism from nonmetazoans to vertebrates and identify a hierarchy of proteins that regulate the polarity and organization of an epithelial tube in?a simple model organism.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号