首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2481篇
  免费   290篇
  国内免费   1篇
  2772篇
  2022年   21篇
  2021年   31篇
  2019年   21篇
  2018年   34篇
  2017年   34篇
  2016年   31篇
  2015年   68篇
  2014年   98篇
  2013年   133篇
  2012年   131篇
  2011年   161篇
  2010年   84篇
  2009年   72篇
  2008年   92篇
  2007年   116篇
  2006年   100篇
  2005年   103篇
  2004年   97篇
  2003年   92篇
  2002年   79篇
  2001年   68篇
  2000年   59篇
  1999年   76篇
  1998年   33篇
  1997年   32篇
  1996年   25篇
  1994年   23篇
  1993年   18篇
  1992年   55篇
  1991年   59篇
  1990年   33篇
  1989年   33篇
  1988年   34篇
  1987年   33篇
  1986年   25篇
  1985年   29篇
  1984年   31篇
  1983年   40篇
  1980年   21篇
  1979年   27篇
  1978年   30篇
  1977年   34篇
  1976年   17篇
  1975年   28篇
  1974年   30篇
  1973年   27篇
  1971年   20篇
  1970年   23篇
  1969年   25篇
  1968年   16篇
排序方式: 共有2772条查询结果,搜索用时 0 毫秒
51.
Termites are major decomposers in terrestrial ecosystems and the second most diverse lineage of social insects. The Kalotermitidae form the second-largest termite family and are distributed across tropical and subtropical ecosystems, where they typically live in small colonies confined to single wood items inhabited by individuals with no foraging abilities. How the Kalotermitidae have acquired their global distribution patterns remains unresolved. Similarly, it is unclear whether foraging is ancestral to Kalotermitidae or was secondarily acquired in a few species. These questions can be addressed in a phylogenetic framework. We inferred time-calibrated phylogenetic trees of Kalotermitidae using mitochondrial genomes of ∼120 species, about 27% of kalotermitid diversity, including representatives of 21 of the 23 kalotermitid genera. Our mitochondrial genome phylogenetic trees were corroborated by phylogenies inferred from nuclear ultraconserved elements derived from a subset of 28 species. We found that extant kalotermitids shared a common ancestor 84 Ma (75–93 Ma 95% highest posterior density), indicating that a few disjunctions among early-diverging kalotermitid lineages may predate Gondwana breakup. However, most of the ∼40 disjunctions among biogeographic realms were dated at <50 Ma, indicating that transoceanic dispersals, and more recently human-mediated dispersals, have been the major drivers of the global distribution of Kalotermitidae. Our phylogeny also revealed that the capacity to forage is often found in early-diverging kalotermitid lineages, implying the ancestors of Kalotermitidae were able to forage among multiple wood pieces. Our phylogenetic estimates provide a platform for critical taxonomic revision and future comparative analyses of Kalotermitidae.  相似文献   
52.
Saccharomyces cerevisiae is used to provide fundamental understanding of eukaryotic genetics, gene product function, and cellular biological processes. Saccharomyces Genome Database (SGD) has been supporting the yeast research community since 1993, serving as its de facto hub. Over the years, SGD has maintained the genetic nomenclature, chromosome maps, and functional annotation, and developed various tools and methods for analysis and curation of a variety of emerging data types. More recently, SGD and six other model organism focused knowledgebases have come together to create the Alliance of Genome Resources to develop sustainable genome information resources that promote and support the use of various model organisms to understand the genetic and genomic bases of human biology and disease. Here we describe recent activities at SGD, including the latest reference genome annotation update, the development of a curation system for mutant alleles, and new pages addressing homology across model organisms as well as the use of yeast to study human disease.  相似文献   
53.
Open resource metagenomics: a model for sharing metagenomic libraries   总被引:1,自引:0,他引:1  
Both sequence-based and activity-based exploitation of environmental DNA have provided unprecedented access to the genomic content of cultivated and uncultivated microorganisms. Although researchers deposit microbial strains in culture collections and DNA sequences in databases, activity-based metagenomic studies typically only publish sequences from the hits retrieved from specific screens. Physical metagenomic libraries, conceptually similar to entire sequence datasets, are usually not straightforward to obtain by interested parties subsequent to publication. In order to facilitate unrestricted distribution of metagenomic libraries, we propose the adoption of open resource metagenomics, in line with the trend towards open access publishing, and similar to culture- and mutant-strain collections that have been the backbone of traditional microbiology and microbial genetics. The concept of open resource metagenomics includes preparation of physical DNA libraries, preferably in versatile vectors that facilitate screening in a diversity of host organisms, and pooling of clones so that single aliquots containing complete libraries can be easily distributed upon request. Database deposition of associated metadata and sequence data for each library provides researchers with information to select the most appropriate libraries for further research projects. As a starting point, we have established the Canadian MetaMicroBiome Library (CM2BL [1]). The CM2BL is a publicly accessible collection of cosmid libraries containing environmental DNA from soils collected from across Canada, spanning multiple biomes. The libraries were constructed such that the cloned DNA can be easily transferred to Gateway® compliant vectors, facilitating functional screening in virtually any surrogate microbial host for which there are available plasmid vectors. The libraries, which we are placing in the public domain, will be distributed upon request without restriction to members of both the academic research community and industry. This article invites the scientific community to adopt this philosophy of open resource metagenomics to extend the utility of functional metagenomics beyond initial publication, circumventing the need to start from scratch with each new research project.  相似文献   
54.
Abstract: Schwann cell cultures were established from adult human sural nerve biopsies. 2'3'-Cyclic nucleotide 3'-phosphohydrolase (CNPase) activity was estimated in the homogenates of those cells by a sensitive isotope assay using [3H]2',3'-cyclic AMP as substrate. A high level of CNPase activity was observed in cultured Schwann cells, whereas cultured human muscle and skin fibroblasts contained negligible levels of CNPase activity. CNPase of human Schwann cells followed typical enzyme-substrate kinetics, with an apparent K m of 1.6 m M for 2',3'-cyclic AMP, and the enzyme was stimulated by detergents such as Triton X-100 and deoxycholate. It was inhibited by p -chloromercuricbenzoate and 2'-AMP. These properties are typical of CNPase isolated from adult brain and spinal cord. CNPase can serve as a new biochemical marker of normal cultured human Schwann cells and can be useful in analyzing the properties of cultured Schwann cells from patients with dysschwannian neuropathies.  相似文献   
55.
56.
57.
58.
No specific abnormalities have been reproducibly manifested in aneurally cultured muscle of Duchenne muscular dystrophy (DMD) patients. We now report that the accumulation of the muscle-"specific" isozyme of creatine kinase (CK-MM) was significantly and preferentially impaired in long-term innervated contracting muscle fibers cultured from 4 DMD patients (DMD-InnCMFs) compared to: i) their noninnervated sister-cultured muscle fibers, and ii) innervated contracting control cultured human muscle fibers (Control-InnCHMFs). Accumulation of other muscle-"specific" isozymes (MSIs), viz. glycogen phosphorylase, phosphoglycerate mutase, and lactic dehydrogenase, was not significantly impaired. We have not observed preferentially-impaired CK-MM accumulation in any Control-InnCHMFs from 22 patients (children and adults) with a variety of neuromuscular diseases. There was no apparent difference between DMD-InnCMFs and Control InnCHMFs regarding: acceptance of innervation; neuronally-driven, virtually continuous muscle-fiber contractions; characteristic myofiber organization by phase-contrast microscopy, and increased longevity of the innervated fibers.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号