首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4661篇
  免费   505篇
  国内免费   2篇
  2022年   32篇
  2021年   61篇
  2020年   50篇
  2019年   61篇
  2018年   64篇
  2017年   70篇
  2016年   83篇
  2015年   178篇
  2014年   196篇
  2013年   245篇
  2012年   334篇
  2011年   342篇
  2010年   191篇
  2009年   174篇
  2008年   256篇
  2007年   239篇
  2006年   231篇
  2005年   234篇
  2004年   231篇
  2003年   213篇
  2002年   208篇
  2001年   90篇
  2000年   74篇
  1999年   94篇
  1998年   63篇
  1997年   49篇
  1996年   41篇
  1995年   38篇
  1994年   32篇
  1993年   35篇
  1992年   69篇
  1991年   71篇
  1990年   51篇
  1989年   41篇
  1988年   43篇
  1987年   39篇
  1986年   33篇
  1985年   30篇
  1984年   37篇
  1983年   42篇
  1980年   21篇
  1979年   31篇
  1978年   34篇
  1977年   36篇
  1975年   30篇
  1974年   32篇
  1973年   29篇
  1971年   20篇
  1970年   23篇
  1969年   29篇
排序方式: 共有5168条查询结果,搜索用时 304 毫秒
211.
Sexual selection has repeatedly been shown to be the probable driving force behind the positive Darwinian evolution of genes affecting male reproductive success. Here we compare the sequence evolution of the sperm ligand zonadhesin with body mass dimorphism in primates. In contrast to previous related studies, the present approach takes into account not only catarrhine primates, but also platyrrhines and lemurs. In detail, we analyze the sequence evolution of concatenated zonadhesin fragments (555 bp) of four Lemuroidea, five Platyrrhini, and seven Catarrhini, using the rate ratio of nonsynonymous to synonymous substitutions (dn/ds=omega). Unexpectedly, subsequent regression analyzes between omega estimates for the terminal branches of a primate phylogeny and residual male body mass reveal that sequence evolution of zonadhesin decreases with increasing sexual dimorphism in body weight. Mapping published mating system classifications onto these results illustrates that unimale breeding species show a tendency for rather slow sequence evolution of zonadhesin and comparably pronounced sexual dimorphism in body weight. Female choice and sperm competition can be assumed to drive the evolution of zonadhesin. We speculate that the level of sperm competition is lower in more sexually dimorphic primates because males of these species monopolize access to fertile females more successfully. Thus, variation in sperm competition may be driving the observed negative correlation of sequence evolution and sexual dimorphism in body weight.  相似文献   
212.
ATP synthases convert an electrochemical proton gradient into rotational movement to produce the ubiquitous energy currency adenosine triphosphate. Tension generated by the rotational torque is compensated by the stator. For this task, a peripheral stalk flexibly fixes the hydrophilic catalytic part F1 to the membrane integral proton conducting part F(O) of the ATP synthase. While in eubacteria a homodimer of b subunits forms the peripheral stalk, plant chloroplasts and cyanobacteria possess a heterodimer of subunits I and II. To better understand the functional and structural consequences of this unique feature of photosynthetic ATP synthases, a procedure was developed to purify subunit I from spinach chloroplasts. The secondary structure of subunit I, which is not homologous to bacterial b subunits, was compared to heterologously expressed subunit II using CD and FTIR spectroscopy. The content of alpha-helix was determined by CD spectroscopy to 67% for subunit I and 41% for subunit II. In addition, bioinformatics was applied to predict the secondary structure of the two subunits and the location of the putative coiled-coil dimerization regions. Three helical domains were predicted for subunit I and only two uninterrupted domains for the shorter subunit II. The predicted length of coiled-coil regions varied between different species and between subunits I and II.  相似文献   
213.
214.
Force generating strong cross-bridges are required to fully activate cardiac thin filaments, but the molecular signaling mechanism remains unclear. Evidence demonstrating differential extents of cross-bridge-dependent activation of force, especially at acidic pH, in myofilaments in which slow skeletal troponin I (ssTnI) replaced cardiac TnI (cTnI) indicates the significance of a His in ssTnI that is an homologous Ala in cTnI. We compared cross-bridge-dependent activation in myofilaments regulated by cTnI, ssTnI, cTnI(A66H), or ssTnI(H34A). A drop from pH 7.0 to 6.5 induced enhanced cross-bridge-dependent activation in cTnI myofilaments, but depressed activation in cTnI(A66H) myofilaments. This same drop in pH depressed cross-bridge-dependent activation in both ssTnI myofilaments and ssTnI(H34A) myofilaments. Compared with controls, cTnI(A66H) myofilaments were desensitized to Ca(2+), whereas there was no difference in the Ca(2+)-force relationship between ssTnI and ssTnI(H34A) myofilaments. The mutations in cTnI and ssTnI did not affect Ca(2+) dissociation rates from cTnC at pH 7.0 or 6.5. However, at pH 6.5, cTnI(A66H) had lower affinity for cTnT than cTnI. We also probed cross-bridge-dependent activation in myofilaments regulated by cTnI(Q56A). Myofilaments containing cTnI(Q56A) demonstrated cross-bridge-dependent activation that was similar to controls containing cTnI at pH 7.0 and an enhanced cross-bridge-dependent activation at pH 6.5. We conclude that a localized N-terminal region of TnI comprised of amino acids 33-80, which interacts with C-terminal regions of cTnC and cTnT, is of particular significance in transducing signaling of thin filament activation by strong cross-bridges.  相似文献   
215.
Cirrhotic cardiomyopathy is the term used to describe a constellation of features indicative of abnormal heart structure and function in patients with cirrhosis. These include systolic and diastolic dysfunction, electrophysiological changes, and macroscopic and microscopic structural changes. The prevalence of cirrhotic cardiomyopathy remains unknown at present, mostly because the disease is generally latent and shows itself when the patient is subjected to stress such as exercise, drugs, hemorrhage and surgery. The main clinical features of cirrhotic cardiomyopathy include baseline increased cardiac output, attenuated systolic contraction or diastolic relaxation in response to physiologic, pharmacologic and surgical stress, and electrical conductance abnormalities (prolonged QT interval). In the majority of cases, diastolic dysfunction precedes systolic dysfunction, which tends to manifest only under conditions of stress. Generally, cirrhotic cardiomyopathy with overt severe heart failure is rare. Major stresses on the cardiovascular system such as liver transplantation, infections and insertion of transjugular intrahepatic portosystemic stent-shunts (TIPS) can unmask the presence of cirrhotic cardiomyopathy and thereby convert latent to overt heart failure. Cirrhotic cardiomyopathy may also contribute to the pathogenesis of hepatorenal syndrome. Pathogenic mechanisms of cirrhotic cardiomyopathy are multiple and include abnormal membrane biophysical characteristics, impaired β-adrenergic receptor signal transduction and increased activity of negative-inotropic pathways mediated by cGMP. Diagnosis and differential diagnosis require a careful assessment of patient history probing for excessive alcohol, physical examination for signs of hypertension such as retinal vascular changes, and appropriate diagnostic tests such as exercise stress electrocardiography, nuclear heart scans and coronary angiography. Current management recommendations include empirical, nonspecific and mainly supportive measures. The exact prognosis remains unclear. The extent of cirrhotic cardiomyopathy generally correlates to the degree of liver insufficiency. Reversibility is possible (either pharmacological or after liver transplantation), but further studies are needed.  相似文献   
216.
Müller DJ  Engel A 《Nature protocols》2007,2(9):2191-2197
Membrane proteins comprise 30% of the proteome of higher organisms. They mediate energy conversion, signal transduction, solute transport and secretion. Their native environment is a bilayer in a physiological buffer solution, hence their structure and function are preferably assessed in this environment. The surface structure of single membrane proteins can be determined in buffer solutions by atomic force microscopy (AFM) at a lateral resolution of less than 1 nm and a vertical resolution of 0.1-0.2 nm. Moreover, single proteins can be directly addressed, stuck to the AFM stylus and subsequently unfolded, revealing the molecular interactions of the protein studied. The examples discussed here illustrate the power of AFM in the structural analysis of membrane proteins in a native environment.  相似文献   
217.
218.
In higher organisms, the functions of many proteins are modulated by post-translational modifications (PTMs). Glycosylation is by far the most diverse of the PTM processes. Natural protein production methods typically produce PTM or glycoform mixtures within which function is difficult to dissect or control. Chemical tagging methods allow the precise attachment of multiple glycosylation modifications to bacterially expressed (bare) protein scaffolds, allowing reconstitution of functionally effective mimics of glycoproteins in higher organisms. In this way combining chemical control of PTM with readily available protein scaffolds provides a systematic platform for creating probes of protein-PTM interactions. This protocol describes the modification of Cys residues in proteins using glycomethanethiosulfonates and glycoselenenylsulfides and the modification of azidohomoalanine residues, introduced by Met replacement using auxotrophic Met(-) Escherichia coli strains, with glycoalkynes and the combination of these techniques for the creation of dual-tagged proteins. Each glycosylation procedure outlined in this protocol can be achieved in half a day.  相似文献   
219.
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号