首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   12篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   4篇
  2015年   5篇
  2014年   10篇
  2013年   13篇
  2012年   13篇
  2011年   19篇
  2010年   13篇
  2009年   11篇
  2008年   12篇
  2007年   12篇
  2006年   13篇
  2005年   9篇
  2004年   9篇
  2003年   12篇
  2002年   18篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有203条查询结果,搜索用时 31 毫秒
21.
Simple MO arguments provide a qualitative explanation for the near-linear ON-Mn-NO arrangement observed for the trans-{Mn(NO)2}8 anion [Mn(Pc)(NO)2]-, which is unexpected for an Enemark-Feltham electron count n>6. The metal center in this species may be described as low-spin d6("t2g6") and the two unpaired electrons occupy a pair of eu orbitals composed of NO(pi*) components, giving rise to a triplet ground state. In a certain sense, these eu SOMOs may be likened to the SOMO (singly occupied molecular orbital) of the allyl radical. The electronic structure of this species is quite different from that of diamagnetic dinitrosylheme intermediates, which have been spectroscopically characterized in synthetic studies as well as proposed for soluble guanylate cyclase and cytochrome c'. Some speculative remarks are offered as to why this proposal is not an unreasonable one from an electronic-structural perspective.  相似文献   
22.
This study presents a first MO analysis of the stereochemistry of cis-Mo(P)(NO)(2), where the Mo(NO)(2) unit eclipses a pair of opposite Mo-N bonds and also adopts a remarkable horseshoe-like conformation. In addition, we have uncovered a number of analogies--in terms of commonalities of metal-ligand orbital interactions--between the dinitrosylmetalloporphyrins, Fe(P)(NO)(2) and Mo(P)(NO)(2), and the two dialkylmetalloporphyrins, Ru(P)(CH(3))(2), and Zr(P)(CH(3))(2).  相似文献   
23.
24.
Mutation of the binding site for Cbl (Tyr1045) in the EGF receptor (EGFR) results in impaired ubiquitination but does not affect EGFR internalization. However, the Y1045F mutation resulted in strongly decreased degradation of the EGFR, as well as efficient recycling of EGFR to the plasma membrane. Significantly, more wild-type EGFR than Y1045F EGFR was found localizing to multivesicular late endosomes. Ubiquitination of the EGFR was in HeLa cells inhibited both upon overexpressing the N-terminal part of Cbl and upon overexpressing a double mutant Grb2 incapable of interacting with Cbl and thereby being incapable of indirectly recruiting Cbl to the EGFR. Collectively, these data suggest that the ubiquitination resulting from direct binding of Cbl to pTyr1045 of the EGFR is critical for lysosomal sorting of the EGFR in contrast to ubiquitination resulting from Grb2-mediated binding of Cbl to the EGFR.  相似文献   
25.
The effect of NO3- uptake on cellular pH was studied in maize roots by an in vivo 31P-NMR technique. In order to separate the effects on cytoplasmic pH due to NO3- uptake from those due to NO3- reduction, tungstate was used to inhibit nitrate reductase (NR). The results confirm that in maize roots tungstate inhibited NR activity. 15N-NMR in vivo experiments demonstrated the cessation of nitrogen flux from nitrate to organic compounds. Tungstate affected neither NO3- uptake nor the levels of the main phosphorylated compounds. Slight changes in cytoplasmic pH were observed during NO3- uptake and reduction (i.e. control). By contrast, in the presence of tungstate, a consistent decrease in cytoplasmic pH occurred. The vacuolar pH did not change in any of the conditions tested. These data show that NO3- uptake is an acidifying process and suggest a possible involvement of NO3- reduction in pH homeostasis. In the presence of NO3-, a transient depolarization of transmembrane electric potential difference (Em) was observed in all the conditions analysed. However, in tungstate-treated roots, a lesser depolarization accompanied by a greater ability to recover Em was found. This was related to a higher activity of the plasma membrane (PM) H+-ATPase. When NO3- was administered as potassium salt, its uptake increased and a greater depolarization of Em took place, whilst the changes in cytoplasmic pH were remarkably reduced, according to the central role played by K+ in the control of plasma membrane activities and cell pH homeostasis. A possible involvement of cytoplasmic pH in the control of PM H+-ATPase expression during nitrate exposure is suggested.  相似文献   
26.
Spangenburg EE  Booth FW 《Cytokine》2006,34(3-4):125-130
Cytokines and growth factors are thought to contribute to skeletal muscle hypertrophy. Leukemia inhibitory factor (LIF), a cytokine, enhances skeletal muscle regeneration; however the role of LIF in skeletal muscle hypertrophy remains uncertain. We examined the hypertrophic ability of the plantaris and soleus muscles in wild-type mice (WT) and LIF knock-out mice [LIF(-/-)] in response to increased mechanical load. Using the functional overload model to induce increases in mechanical load on the plantaris and soleus muscle, WT mice demonstrated increases in plantaris and soleus mass after 7, 21, and 42 days of loading. However, the LIF(-/-) mice had no significant increases in plantaris muscle mass at any time point, while the soleus muscle exhibited a delayed hypertrophic response. Systemic delivery of LIF to the LIF(-/-) mice returned the hypertrophic response to the same levels as the WT mice after 21 days of functional overload. These data demonstrate for the first time that LIF expression in loaded skeletal muscle is critical for the development of skeletal muscle hypertrophy in the functional overload model.  相似文献   
27.
Eccentric contractions (EC) are known to result in muscle hypertrophy, potentially through activation of the Akt-mammalian target of rapamycin-p70 S6 kinase (p70S6K) signaling pathway. Previous work has also demonstrated that EC result in the opening of stretch-activated channels (SAC), and inhibition of these channels resulted in an attenuation of EC-induced muscle hypertrophy. The purpose of this study was to test the hypothesis that a known intracellular pathway directly associated with muscle hypertrophy is coupled to the opening of SAC. Specifically, we measured the activation of the Akt, GSK-3beta, p70S6K, and ribosomal protein S6 following a single bout of EC in the rat tibialis anterior (TA) muscle. The TA muscles performed four sets of six repetitions of EC. In vivo blockade of SAC was performed by a continuous oral treatment with streptomycin in the drinking water (4 g/l) or by intravenous infusion of 80 micromol/kg gadolinium (Gd3+). EC increased the degree of Akt and p70S6K phosphorylation in the TA muscle, whereas in animals in which SAC had been inhibited, there was a reduced capacity for EC to induce Akt or p70S6K phosphorylation. Accompanying this reduced activation of Akt and p70S6K was a failure to phosphorylate GSK-3beta or S6 when SAC were inhibited. The results from these data indicate the necessity of functional SAC for the complete activation of Akt and p70S6K pathway in response to EC.  相似文献   
28.
The new generation of silicon-based multielectrodes comprising hundreds or more electrode contacts offers unprecedented possibilities for simultaneous recordings of spike trains from thousands of neurons. Such data will not only be invaluable for finding out how neural networks in the brain work, but will likely be important also for neural prosthesis applications. This opportunity can only be realized if efficient, accurate and validated methods for automatic spike sorting are provided. In this review we describe some of the challenges that must be met to achieve this goal, and in particular argue for the critical need of realistic model data to be used as ground truth in the validation of spike-sorting algorithms.  相似文献   
29.
The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans‐Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi‐related functions, such as an altered abundance of certain N‐glycosylated proteins, altered composition of cell‐wall hemicelluose, and higher sensitivity to the Golgi α‐mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a ‘mimic disease’ phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild‐type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans‐Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.  相似文献   
30.
The difference is in the start: impact of timing and start procedure on sprint running performance. The purpose of this study was to compare different sprint start positions and to generate correction factors between popular timing triggering methods on 40-m/40-yd sprint time. Fourteen female athletes (17 ± 1 years), personal best 100 m: 13.26 (±0.68) seconds and 11 male athletes (20 ± 5 years), personal best 100 m: 11.58 (±0.74) seconds participated. They performed 2 series of 3 40-m sprints in randomized order: (a) start from the block, measured by means of Brower audio sensor (BAS) and Dartfish video timing (DVT), (b) 3-point start, measured by using hand release pod (HR) and DVT, and (c) standing start, triggered by both photocell across starting line (SFC), and foot release (FR) plus DVT. Video analysis was performed by 2 independent observers and averaged. Simultaneous measurements at national athletics competitions demonstrated that DVT and BAS were equivalent to Omega Timing within the limits of precision of video timing (±0.01 seconds). Hand and floor timer triggering showed small but significant biases compared with movement captured from video (0.02-0.04 seconds), presumably because of sensitivity of pressure thresholds. Coefficient of variation for test-retest timing using different starting positions ranged from 0.7 to 1.0%. Compared with block starts reacting to gunfire, HR, SFC, and FR starts yielded 0.17 ± 0.09, 0.27 ± 0.12, and 0.69 ± 0.11 second faster times, respectively, over 40 m (all p < 0.001) because of inclusion or exclusion of reaction time, plus momentum, and body position differences at trigger moment. Correction factors for the conversion of 40 m/40 yd and 40 yd/40 m were 0.92 and 1.08, respectively. The correction factors obtained from this study may facilitate more meaningful comparisons of published sprint performances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号