全文获取类型
收费全文 | 2817篇 |
免费 | 206篇 |
专业分类
3023篇 |
出版年
2023年 | 9篇 |
2022年 | 30篇 |
2021年 | 40篇 |
2020年 | 29篇 |
2019年 | 49篇 |
2018年 | 42篇 |
2017年 | 50篇 |
2016年 | 80篇 |
2015年 | 127篇 |
2014年 | 123篇 |
2013年 | 180篇 |
2012年 | 203篇 |
2011年 | 210篇 |
2010年 | 123篇 |
2009年 | 110篇 |
2008年 | 167篇 |
2007年 | 177篇 |
2006年 | 162篇 |
2005年 | 147篇 |
2004年 | 136篇 |
2003年 | 138篇 |
2002年 | 130篇 |
2001年 | 35篇 |
2000年 | 28篇 |
1999年 | 48篇 |
1998年 | 25篇 |
1997年 | 22篇 |
1996年 | 25篇 |
1995年 | 20篇 |
1994年 | 14篇 |
1993年 | 20篇 |
1992年 | 24篇 |
1991年 | 26篇 |
1990年 | 23篇 |
1989年 | 19篇 |
1988年 | 16篇 |
1987年 | 23篇 |
1986年 | 16篇 |
1985年 | 16篇 |
1984年 | 18篇 |
1983年 | 14篇 |
1982年 | 8篇 |
1981年 | 15篇 |
1980年 | 10篇 |
1979年 | 11篇 |
1978年 | 14篇 |
1977年 | 9篇 |
1976年 | 10篇 |
1974年 | 8篇 |
1970年 | 10篇 |
排序方式: 共有3023条查询结果,搜索用时 15 毫秒
91.
Alexey V Krasnoslobodtsev Alexander M Portillo Tanja Deckert-Gaudig Volker Deckert Yuri L Lyubchenko 《朊病毒》2010,4(4):265-274
Misfolding and aggregation of prion proteins is linked to a number of neurodegenerative disorders such as Creutzfeldt-Jacob disease (CJD) and its variants: Kuru, Gerstmann-Straussler-Scheinker syndrome and fatal familial insomnia. In prion diseases, infectious particles are proteins that propagate by transmitting a misfolded state of a protein, leading to the formation of aggregates and ultimately to neurodegeneration. Prion phenomenon is not restricted to humans. There are a number of prion-related diseases in a variety of mammals, including bovine spongiform encephalopathy (BSE, also known as “mad cow disease”) in cattle. All known prion diseases, collectively called transmissible spongiform encephalopathies (TSEs), are untreatable and fatal. Prion proteins were also found in some fungi where they are responsible for heritable traits. Prion proteins in fungi are easily accessible and provide a powerful model for understanding the general principles of prion phenomenon and molecular mechanisms of mammalian prion diseases. Presently, several fundamental questions related to prions remain unanswered. For example, it is not clear how prions cause the disease. Other unknowns include the nature and structure of infectious agent and how prions replicate. Generally, the phenomenon of misfolding of the prion protein into infectious conformations that have the ability to propagate their properties via aggregation is of significant interest. Despite the crucial importance of misfolding and aggregation, very little is currently known about the molecular mechanisms of these processes. While there is an apparent critical need to study molecular mechanisms underlying misfolding and aggregation, the detailed characterization of these single molecule processes is hindered by the limitation of conventional methods. Although some issues remain unresolved, much progress has been recently made primarily due to the application of nanoimaging tools. The use of nanoimaging methods shows great promise for understanding the molecular mechanisms of prion phenomenon, possibly leading toward early diagnosis and effective treatment of these devastating diseases. This review article summarizes recent reports which advanced our understanding of the prion phenomenon through the use of nanoimaging methods.Key words: protein misfolding, prion, atomic force microscopy, nanomedicine, force spectroscopy 相似文献
92.
Cecilia Soldatini Yuri V. Albores-Barajas Alejandro Ramos-Rodriguez Adrian Munguia-Vega Eduardo González-Rodríguez Carlo Catoni Giacomo Dell'Omo 《Population Ecology》2019,61(2):227-239
During the breeding season, seabird foraging trips are constrained by nest attendance schedule and are necessarily colony centred. Oceanographic cues play a major role in the choice of foraging areas to minimize the time spent away from the nest. Here, we analysed the foraging tracks of Black-vented Shearwaters Puffinus opisthomelas during the incubation and chick-rearing periods of 2016 and 2017 at Isla Natividad (Mexico). We applied expectation-maximization binary clustering to track data to clusterize different behaviour patterns during foraging flights. We then applied binary generalized linear mixed models to characterize of foraging areas based on of environmental variables. We finally used kernel estimation techniques to describe main foraging areas. In 2016, breeding shearwaters used two core areas for foraging and resting on the water; the core area delineated by males was located northward from the colony in the Vizcaino Bay and the core area for females was located southward from the colony at the entrance of San Ignacio Lagoon. In 2017, males and females used the same areas with no evident segregation. Our study provided the first information on Black-vented Shearwater foraging areas during the breeding season and indicated that sexual segregation within coastal waters off the central Baja California Peninsula might be a foraging strategy during years of warmer ocean, likely less productive regimes. Factors including ocean-climate-mediated sexual segregation at sea, leading to interannual variation in foraging areas, should be considered when evaluating management actions intended to protect critical foraging habitats for Black-vented Shearwaters. 相似文献
93.
Satoshi Umeda Saiko Tochizawa Midori Shibata Yuri Terasawa 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2016,371(1708)
Previous studies on prospective memory (PM), defined as memory for future intentions, suggest that psychological stress enhances successful PM retrieval. However, the mechanisms underlying this notion remain poorly understood. We hypothesized that PM retrieval is achieved through interaction with autonomic nervous activity, which is mediated by the individual accuracy of interoceptive awareness, as measured by the heartbeat detection task. In this study, the relationship between cardiac reactivity and retrieval of delayed intentions was evaluated using the event-based PM task. Participants were required to detect PM target letters while engaged in an ongoing 2-back working memory task. The results demonstrated that individuals with higher PM task performance had a greater increase in heart rate on PM target presentation. Also, higher interoceptive perceivers showed better PM task performance. This pattern was not observed for working memory task performance. These findings suggest that cardiac afferent signals enhance PM retrieval, which is mediated by individual levels of interoceptive accuracy.This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’. 相似文献
94.
Ando T Semba K Suda H Sei A Mizuta H Araki M Abe K Imai K Nakagata N Araki K Yamamura K 《Mechanisms of development》2011,128(1-2):129-140
Danforth'sshort-tail (Sd) mouse is a semi-dominant mutation affecting the development of the vertebral column. Although the notochord degenerates completely by embryonic day 9.5, the vertebral column exists up to the lumber region, suggesting that the floor plate can substitute for notochord function. We previously established the mutant mouse line, Skt(Gt), through gene trap mutagenesis and identified the novel gene, Skt, which was mapped 0.95cM distal to the Sd locus. Taking advantage of the fact that monitoring notochordal development and genotyping of the Sd locus can be performed using the Skt(Gt) allele, we assessed the development of the vertebra, notochord, somite, floor plate and sclerotome in +-+/+-Skt(Gt), Sd-+/+-+, Sd-Skt(Gt)/+-+, Sd-Skt(Gt)/+-Skt(Gt), Sd-+/Sd-+ and Sd-Skt(Gt)/Sd-Skt(Gt) embryos. In Sd homozygous mutants with a C57BL/6 genetic background, the vertebral column was truncated in the 6th thoracic vertebra, which was more severe than previously reported. The floor plate and sclerotome developed to the level of somite before notochord degeneration and the number of remaining vertebrae corresponded well with the level of development of the floor plate and sclerotome. Defects to the sclerotome and subsequent vertebral development were not due to failure of somitogenesis. Taken together, these results suggest that the notochord induced floor plate development before degeneration, and that the remaining floor plate is sufficient for maintenance of differentiation of the somite into the sclerotome and vertebra in the absence of the notochord. 相似文献
95.
McCormick MM Rahimi F Bobryshev YV Gaus K Zreiqat H Cai H Lord RS Geczy CL 《The Journal of biological chemistry》2005,280(50):41521-41529
Atherogenesis is a complex process involving inflammation. S100A8 and S100A9, the Ca2+-binding neutrophil cytosolic proteins, are associated with innate immunity and regulate processes leading to leukocyte adhesion and transmigration. In neutrophils and monocytes the S100A8-S100A9 complex regulates phosphorylation, NADPH-oxidase activity, and fatty acid transport. The proteins have anti-microbial properties, and S100A8 may play a role in oxidant defense in inflammation. Murine S100A8 is regulated by inflammatory mediators and recruits macrophages with a proatherogenic phenotype. S100A9 but not S100A8 was found in macrophages in ApoE-/- murine atherosclerotic lesions, whereas both proteins are expressed in human giant cell arteritis. Here we demonstrate S100A8 and S100A9 protein and mRNA in macrophages, foam cells, and neovessels in human atheroma. Monomeric and complexed forms were detected in plaque extracts. S100A9 was strongly expressed in calcifying areas and the surrounding extracellular matrix. Vascular matrix vesicles contain high levels of Ca2+-binding proteins and phospholipids that regulate calcification. Matrix vesicles characterized by electron microscopy, x-ray microanalysis, nucleoside triphosphate pyrophosphohydrolase assay and cholesterol/phospholipid analysis contained predominantly S100A9. We propose that S100A9 associated with lipid structures in matrix vesicles may influence phospholipid-Ca2+ binding properties to promote dystrophic calcification. S100A8 and S100A9 were more sensitive to hypochlorite oxidation than albumin or low density lipoprotein and immunoaffinity confirmed S100A8-S100A9 complexes; some were resistant to reduction, suggesting that hypochlorite may contribute to protein cross-linking. S100A8 and S100A9 in atherosclerotic plaque and calcifying matrix vesicles may significantly influence redox- and Ca2+-dependent processes during atherogenesis and its chronic complications, particularly dystrophic calcification. 相似文献
96.
Yuri Wanderley Cavalcanti Martinna Mendonça Bertolini Wander José da Silva Altair Antoninha Del-Bel-Cury Livia Maria Andaló Tenuta 《Biofouling》2014,30(5):579-588
Although Streptococcus mutans biofilms have been useful for evaluating the cariogenic potential of dietary carbohydrates and the effects of fluoride on dental demineralization, a more appropriate biofilm should be developed to demonstrate the influence of other oral bacteria on cariogenic biofilms. This study describes the development and validation of a three-species biofilm model comprising Streptococcus mutans, Actinomyces naeslundii, and Streptococcus gordonii for the evaluation of enamel and dentin demineralization after cariogenic challenges and fluoride exposure. Single- or three-species biofilms were developed on dental substrata for 96?h, and biofilms were exposed to feast and famine episodes. The three-species biofilm model produced a large biomass, mostly comprising S. mutans (41%) and S. gordonii (44%), and produced significant demineralization in the dental substrata, although enamel demineralization was decreased by fluoride treatment. The findings indicate that the three-species biofilm model may be useful for evaluating the cariogenic potential of dietary carbohydrates other than sucrose and determining the effects of fluoride on dental substrata. 相似文献
97.
Aldini G Carini M Vistoli G Shibata T Kusano Y Gamberoni L Dalle-Donne I Milzani A Uchida K 《Biochemistry》2007,46(10):2707-2718
A proteomic approach was used to identify 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) protein targets in human neuroblastoma SH-SY5Y cells. By using biotinylated 15d-PGJ2, beta-actin was found as the major adducted protein; at least 12 proteins were also identified as minor biotin-positive spots, falling in different functional classes, including glycolytic enzymes (enolase and lactate dehydrogenase), redox enzymes (biliverdin reductase), and a eukaryotic regulatory protein (14-3-3gamma). 15d-PGJ2 induced marked morphological changes in the actin filament network and in particular promoted F-actin depolymerization as confirmed by Western blot analysis. By using a mass spectrometric approach, we found that 15d-PGJ2 reacts with isolated G-actin in a 1:1 stoichiometric ratio and selectively binds the Cys374 site through a Michael adduction mechanism. Computational studies showed that the covalent binding of 15d-PGJ2 induces a significant unfolding of actin structure and in particular that 15d-PGJ2 distorts the actin subdomains 2 and 4, which define the nucleotide binding sites impeding the nucleotide exchange. The functional effect of 15d-PGJ2 on G-actin was studied by polymerization measurement: in the presence of 15d-PGJ2, a lower amount of F-actin forms, as followed by the increase in pyrenyl-actin fluorescence intensity, as the major effect of increasing 15d-PGJ2 concentrations occurs on the maximum extent of actin polymerization, whereas it is negligible on the initial rate of reaction. In summary, the results here reported give an insight into the role of 15d-PGJ2 as a cytotoxic compound in neuronal cell dysfunction. Actin is the main protein cellular target of 15d-PGJ2, which specifically binds through a Michael adduction to Cys374, leading to a protein conformational change that can explain the disruption of the actin cytoskeleton, F-actin depolymerization, and impairment of G-actin polymerization. 相似文献
98.
99.
Inactivation of the nitrate-reducing system in whole cells of Chlorella vulgaris Bejerinck by darkening, nitrogen starvation, ammonium, or cycloheximide brings cells into a state with a high yield of the millisecond-delayed fluorescence of chlorophyll. Activation of this system by illumination, by adding glucose to dark-adapted cells or nitrate to nitrogen-starved cells brings the cells into a low-yield state. The transitions between the lowand high-yield state induced by alternating light and dark periods are suppressed by tungstate and restored by subsequent molybdate addition. The drop in the delayed-fluorescence yield upon activation of the nitrate-reducing system is associated with the decrease of the amplitude of the electrochemical proton gradient across the thylakoid membrane of the chloroplast, as evidenced by the kinetics of the light-induced adsorption changes at 520 nm. The decrease of the proton gradient may be caused by the electron flow diverting from the cyclic path in photosystem I as a result of the activation of the electron transfer from ferredoxin to nitrite.Abbreviation DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea 相似文献
100.
Nadezhda N. Sushchik Yuri A. Yurchenko Michail I. Gladyshev Olga E. Belevich Galina S. Kalachova Angelika A. Kolmakova 《Insect Science》2013,20(5):585-600
Emerging aquatic insects, including mosquitoes, are known to transfer to terrestrial ecosystems specific essential biochemicals, such as polyunsaturated fatty acids (PUFA). We studied fatty acid (FA) composition and contents of dominant mosquito populations (Diptera: Culicidae), that is, Anopheles messeae, Ochlerotatus caspius, Oc. flavescens, Oc. euedes, Oc. subdiversus, Oc. cataphylla, and Aedes cinereus, inhabited a steppe wetland of a temperate climate zone to fill up the gap in their lipid knowledge. The polar lipid and triacylglycerol fractions of larvae and adults were compared. In most studied mosquito species, we first found and identified a number of short‐chain PUFA, for example, prominent 14:2n‐6 and 14:3n‐3, which were not earlier documented in living organisms. These PUFA, although occurred in low levels in adult mosquitoes, can be potentially used as markers of mosquito biomass in terrestrial food webs. We hypothesize that these acids might be synthesized (or retroconverted) by the mosquitoes. Using FA trophic markers accumulated in triacylglycerols, trophic relations of the mosquitoes were accessed. The larval diet comprised green algae, cryptophytes, and dinoflagellates and provided the mosquitoes with essential n‐3 PUFA, linolenic, and eicosapentaenoic acids. As a result, both larvae and adults of the studied mosquitoes had comparatively high content of the essential PUFA. Comparison of FA proportions in polar lipids versus storage lipids shown that during mosquito metamorphosis transfer of essential eicosapentaenoic and arachidonic acids from the reserve in storage lipids of larvae to functional polar lipids in adults occurred. 相似文献