首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   7篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2010年   5篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
11.
12.

Background

Mechanism of radioresistance in rectal carcinoma remains largely unknown. We aimed to evaluate the predictive role of ATP-binding cassette subfamily C member 4 (ABCC4) in locally advanced rectal carcinoma and explore possible molecular mechanisms by which ABCC4 confers the resistance to neoadjuvant radiotherapy.

Methods

The expression of ABCC4 and P53 mutant in biopsy tissue specimens from 121 locally advanced rectal carcinoma patients was examined using immunohistochemistry. The factors contributing to 3-year overall survival and disease-free survival were evaluated using the Kaplan-Meier method and Cox proportional hazard model. Lentivirus-mediated small hairpin RNA was applied to inhibit ABCC4 expression in colorectal carcinoma cell line RKO, and investigate the radiosensitivity in xenograft model. Intracellular cyclic adenosine monophosphate concentration and cell cycle distribution following irradiation were detected.

Results

High expression of ABCC4 and p53 mutant in pretreated tumors, poor pathological response, and high final tumor staging were significant factors independently predicted an unfavorable prognosis of locally advanced rectal carcinoma patients after neoadjuvant radiotherapy. Down-regulation of ABCC4 expression significantly enhanced irradiation-induced suppression of tumor growth in xenograft model. Furthermore, down-regulation of ABCC4 expression enhanced intracellular cyclic adenosine monophosphate production and noticeable deficiency of G1-S phase checkpoint in cell cycle following irradiation.

Conclusions

Our study suggests that ABCC4 serves as a novel predictive biomarker that is responsible for the radioresistance and predicts a poor prognosis for locally advanced rectal carcinoma after neoadjuvant radiotherapy.  相似文献   
13.
Live virtual machine migration can have a major impact on how a cloud system performs, as it consumes significant amounts of network resources such as bandwidth. Migration contributes to an increase in consumption of network resources which leads to longer migration times and ultimately has a detrimental effect on the performance of a cloud computing system. Most industrial approaches use ad-hoc manual policies to migrate virtual machines. In this paper, we propose an autonomous network aware live migration strategy that observes the current demand level of a network and performs appropriate actions based on what it is experiencing. The Artificial Intelligence technique known as Reinforcement Learning acts as a decision support system, enabling an agent to learn optimal scheduling times for live migration while analysing current network traffic demand. We demonstrate that an autonomous agent can learn to utilise available resources when peak loads saturate the cloud network.  相似文献   
14.
Moran E 《Cytotechnology》1999,29(2):135-149
Veterinary viral vaccines generally comprise either attenuated or chemically inactivated viruses which have been propagated on mammalian cell substrates or specific pathogen free (SPF) eggs. New generation vaccines include chemically inactivated virally-infected whole cell vaccines. The NM57 cell line is a bovine nasal turbinate persistently infected (non-lytic infection) with a strain of the respiratory syncytial virus (RSV). The potential of microcarrier technology for the cultivation in bioreactors of this anchorage dependent cell line for RSV vaccine production has been investigated. Both Cytodex 3 and Cultispher S microcarriers proved most suitable from a selection of microcarriers as growth substrates for this NM57 cell line. Maximum cell densities of 4.12×105 cells ml-1and 5.52×105 cells ml-1 respectively were obtained using Cytodex 3 (3 g l-1) and and Cultispher S (1 g l-1) in 5 l bioreactor cultures. The fact that cell growth was less sensitive to agitation rate when cultured on Cultispher S microcarriers, and that cells were efficiently harvested from this microcarrier by an enzymatic method, suggested Cultispher S is suitable for further evaluation at larger bioreactor scales (>5 l) than that described here. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
15.
16.

Background  

Increasingly researchers are turning to the use of haplotype analysis as a tool in population studies, the investigation of linkage disequilibrium, and candidate gene analysis. When the phase of the data is unknown, computational methods, in particular those employing the Expectation-Maximisation (EM) algorithm, are frequently used for estimating the phase and frequency of the underlying haplotypes. These methods have proved very successful, predicting the phase-known frequencies from data for which the phase is unknown with a high degree of accuracy. Recently there has been much speculation as to the effect of unknown, or missing allelic data – a common phenomenon even with modern automated DNA analysis techniques – on the performance of EM-based methods. To this end an EM-based program, modified to accommodate missing data, has been developed, incorporating non-parametric bootstrapping for the calculation of accurate confidence intervals.  相似文献   
17.
Emp46p and Emp47p are yeast putative cargo receptors that recycle between the endoplasmic reticulum and the Golgi apparatus. These receptors can form complexes in a pH-dependent manner, but their molecular mechanisms remain unclear. Here, we successfully reproduced their interactions in vitro solely with their coiled-coil segments, which form stable heterotetramers in the neutral condition but segregate at lower pH. Mutational data identified a key glutamate residue of Emp46p that serves as the pH-sensing switch of their oligomer formation. Our findings elucidate the mechanisms of the dynamic cargo receptor interactions in the secretory pathway and the design framework of the environment-responsive molecular assembly and disassembly systems.  相似文献   
18.

Background

Dot1L, a histone methyltransferase that targets histone H3 lysine 79 (H3K79), has been implicated in gene regulation and the DNA damage response although its functions in these processes remain poorly defined.

Methodology/Principal Findings

Using the chicken DT40 model system, we generated cells in which the Dot1L gene is disrupted to examine the function and focal recruitment of the 53Bp1 DNA damage response protein. Detailed kinetic and dose response assays demonstrate that, despite the absence of H3K79 methylation demonstrated by mass spectrometry, 53Bp1 focal recruitment is not compromised in these cells. We also describe, for the first time, the phenotypes of a cell line lacking both Dot1L and 53Bp1. Dot1L−/− and wild type cells are equally resistant to ionising radiation, whereas 53Bp1−/−/Dot1L−/− cells display a striking DNA damage resistance phenotype. Dot1L and 53Bp1 also affect the expression of many genes. Loss of Dot1L activity dramatically alters the mRNA levels of over 1200 genes involved in diverse biological functions. These results, combined with the previously reported list of differentially expressed genes in mouse ES cells knocked down for Dot1L, demonstrates surprising cell type and species conservation of Dot1L-dependent gene expression. In 53Bp1−/− cells, over 300 genes, many with functions in immune responses and apoptosis, were differentially expressed. To date, this is the first global analysis of gene expression in a 53Bp1-deficient cell line.

Conclusions/Significance

Taken together, our results uncover a negative role for Dot1L and H3K79 methylation in the DNA damage response in the absence of 53Bp1. They also enlighten the roles of Dot1L and 53Bp1 in gene expression and the control of DNA double-strand repair pathways in the context of chromatin.  相似文献   
19.
We describe the application of ligand based virtual screening technologies towards the discovery of novel plasmepsin (PM) inhibitors, a family of malarial parasitic aspartyl proteases. Pharmacophore queries were used to screen vendor libraries in search of active and selective compounds. The virtual hits were biologically assessed for activity and selectivity using whole cell Plasmodium falciparum parasites and on target in PM II, PM IV and the closely related human homologue, Cathepsin D assays. Here we report the virtual screening highlights, structures of the hits and their demonstrated biological activity.  相似文献   
20.
To examine the role of the brain stem melanocortin system in long-term energy regulation, we assessed the effects of overproduction of proopiomelanocortin (POMC) in the caudal brain stem of F344xBN rats with adult-onset obesity. Recombinant adeno-associated viral vector encoding POMC gene was delivered to the nucleus of solitary tract (NTS) in the hindbrain, and food intake, body weight, glucose and fat metabolism, brown adipose tissue thermogenesis, and mRNA levels of neuropeptides and melanocortin receptors were assessed. POMC delivery resulted in sustained reduction in food intake and body weight over 42 days and improved insulin sensitivity. At death, in recombinant adeno-associated viral vector-POMC-treated rats vs. control rats, alpha-melanocyte-stimulating hormone in NTS increased nearly 21-fold, whereas hypothalamic alpha-melanocyte-stimulating hormone remained unchanged. Visceral adiposity decreased by 37%; tissue triglyceride content diminished by 26% and 47% in liver and muscle, respectively; serum triglyceride and nonesterified fatty acids were reduced by 35% and 34%, respectively; phosphorylation of acetyl-CoA carboxylase was elevated by 63% in soleus muscle; brown adipose tissue uncoupling protein 1 increased by 30%; and melanocortin 3 receptor expression declined by 60%, whereas neuropeptide Y, agouti-related protein, and MC4 receptor mRNA levels were unchanged in the NTS. In conclusion, POMC overexpression in the NTS produces a characteristic unabated hypophagia that is uniquely different from the anorexic tachyphylaxis following POMC overexpression in the hypothalamus. The sustained anorectic response may result from absence of compensatory elements in the NTS, such as increased agouti-related protein expression, suggesting melanocortin activation of the brain stem may be a viable strategy to alleviate obesity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号