首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   30篇
  国内免费   1篇
  2023年   3篇
  2022年   5篇
  2021年   8篇
  2020年   7篇
  2019年   8篇
  2018年   10篇
  2017年   10篇
  2016年   15篇
  2015年   20篇
  2014年   22篇
  2013年   28篇
  2012年   29篇
  2011年   39篇
  2010年   16篇
  2009年   9篇
  2008年   24篇
  2007年   18篇
  2006年   25篇
  2005年   15篇
  2004年   21篇
  2003年   12篇
  2002年   10篇
  2001年   8篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1987年   1篇
排序方式: 共有373条查询结果,搜索用时 0 毫秒
371.
The phylogeography of the porcine X chromosome has not been studied despite the unique characteristics of this chromosome. Here, we genotyped 59 single nucleotide polymorphisms (SNPs) in 312 pigs from around the world, representing 39 domestic breeds and wild boars in 30 countries. Overall, widespread commercial breeds showed the highest heterozygosity values, followed by African and American populations. Structuring, as inferred from FST and analysis of molecular variance, was consistently larger in the non‐pseudoautosomal (NPAR) than in the pseudoautosomal regions (PAR). Our results show that genetic relationships between populations can vary widely between the NPAR and the PAR, underscoring the fact that their genetic trajectories can be quite different. NPAR showed an increased commercial‐like genetic component relative to the PAR, probably because human selection processes to obtain individuals with high productive parameters were mediated by introgressing boars rather than sows.  相似文献   
372.
Subterranean rodents are often considered as ecosystem engineers because they physically modify the surrounding environment due to their burrowing and foraging activities. Understanding the modifications that ecosystem engineering species exert on the environment are of crucial importance in ecology studies, since they may affect the structure and population dynamics of several species, including lizards. Thus, the objective of the present study is to test the effect that Ctenomys mendocinus exert in the abundance of Liolaemus ruibali and its escape behaviour, in a high-elevation desert. Lizard abundance was estimated using observation transects and escape behaviour was studied with an experiment where the observer was considered by lizards as a potential predator and distance before the lizard flees was measured. All the variables were compared between areas disturbed by C. mendocinus and undisturbed ones. We found that L. ruibali was favoured by C. mendocinus activity. By creating burrow systems that serve as refuges for lizards, this rodent species increases the abundance of L. ruibali and reduces its flight distance, thereby improving its escape performance. We may suggest that C. mendocinus, through the construction of burrow systems, would be acting as an ecosystem engineer in Puna desert, affecting L. ruibali ecology.  相似文献   
373.
Cynodon dactylon is one of the five most important invasive alien species worldwide. It is the invasive alien species with the broadest distribution range in Uruguay, and its expansion is frequently associated with disturbances. Since natural grasslands are facing processes of productive intensification, C. dactylon represents a threat as it could displace native species. However, the mechanisms that explain its invasion success remain unclear. The objective of this study was to analyse interspecific interactions under low nutrient conditions between C. dactylon and two species that are native to the Campo grasslands in Uruguay. Specifically, we assessed differences in the components of competitive ability effects and responses (or tolerance) as possible mechanisms involved in C. dactylon invasiveness. We performed a greenhouse experiment in pots with low-nutrient substrate assessing pair-wise interactions between C. dactylon, Mnesithea selloana and Paspalum notatum plus control pots consisting of single individual of each species. The invasive species showed greater competitive ability than both native grasses, as it reduced their below and above-biomass. Conversely, the size of C. dactylon plants interacting with native species was similar to that of single C. dactylon plants growing alone (controls). This reveals that the greater competitive ability of the invasive species was due to a greater tolerance to grow with neighbouring plants. The reason underlying this tolerance was a marked increase in biomass allocation towards stolons and leaves, at the expense of roots. Conversely, native species barely changed their shoot-root allocation pattern when interacting with neighbours. Furthermore, C. dactylon induced reproductive development solely when interacting with neighbours. Along with the fact that the potential growth rate of the invasive and native species was quite similar, these results suggest that sensitive and rapidly triggered shade avoidance responses could be one mechanism involved in the invasion success of C. dactylon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号