首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   12篇
  152篇
  2023年   4篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   5篇
  2015年   9篇
  2014年   7篇
  2013年   18篇
  2012年   11篇
  2011年   9篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2000年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1985年   2篇
  1984年   8篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1970年   2篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
11.
The aim of our study was to investigate the healing effect of propionyl-L-carnitine (PLC) on chronic gastric ulcers and its underlying mechanisms. This study included rats with gastric ulcers induced by applying serosal glacial acetic acid. These rats were then given either saline (vehicle) or PLC at doses of 60 and 120 mg/kg, administered orally 3 days after ulcer induction for 14 consecutive days. Our study found that treatment with PLC resulted in a reduction of the gastric ulcer area, a faster rate of ulcer healing, and stimulated mucosal restoration. Additionally, the treatment with PLC reduced the number of Iba-1+ M1 macrophages while increasing the number of galectin-3+ M2 macrophages, as well as desmin+ microvessels, and α-SMA+ myofibroblasts in the gastric ulcer bed. The mRNA expression of COX-2, eNOS, TGF-β1, VEGFA, and EGF in the ulcerated gastric mucosa was greater in the PLC-treated groups compared with the vehicle-treated rats. In conclusion, these findings suggest that PLC treatment may accelerate gastric ulcer healing by stimulating mucosal reconstruction, macrophage polarization, angiogenesis, and fibroblast proliferation, as well as fibroblast-myofibroblast transition. This process is associated with the upregulation of TGF-β1, VEGFA, and EGF, as well as modulation of the cyclooxygenase/nitric oxide synthase systems.  相似文献   
12.

Background

Fatty acid (FA)-alterations may mediate the mutual association between Major Depressive Disorder (MDD) and cardiovascular disease (CVD). However, etiology of observed FA-alterations in MDD and CVD remains largely unclear. An interesting candidate may be a mutation in the fatty acid–binding protein 2 (FABP2)-gene, because it regulates dietary FA-uptake. Therefore, we aimed to test the hypotheses that in MDD-patients the FABP2 Ala54Thr-polymorphism would be (I) more prevalent than in sex- and age-matched controls, (II) associated with observed alterations in FA-metabolism, and (III) associated with CVD-risk factor waist circumference.

Methods

We measured concentrations of 29 different erythrocyte FAs, FABP2-genotype, and waist circumference in recurrent MDD-patients and matched never-depressed controls.

Results

FABP2-genotype distribution did not significantly differ between the 137 MDD-patients and 73 matched controls. However, patients with the Ala54Thr-polymorphism had (I) higher concentrations of especially eicosadienoic acid (C20:2ω6; P=.009) and other 20-carbon FAs, and associated (II) lower waist circumference (P=.019). In addition, FABP2-genotype effects on waist circumference in patients seemed (I) mediated by its effect on C20:2ω6, and (II) different from controls.

Conclusions

Although Ala54Thr-polymorphism distribution was not associated with recurrent MDD, our results indicate that FABP2 may play a role in the explanation of observed FA-alterations in MDD. For Ala54Thr-polymorphism patients, potentially adaptive conversion of increased bioavailable dietary precursors into eicosadienoic acid instead of arachidonic acid might be related to a low waist circumference. Because this is the first investigation of these associations, replication is warranted, preferably by nutrigenetic studies applying lipidomics and detailed dietary assessment.  相似文献   
13.
New generation vaccines are in demand to include only the key antigens sufficient to confer protective immunity among the plethora of pathogen molecules. In the last decade, large-scale genomics-based technologies have emerged. Among them, the Reverse Vaccinology approach was successfully applied to the development of an innovative vaccine against Neisseria meningitidis serogroup B, now available on the market with the commercial name BEXSERO® (Novartis Vaccines). The limiting step of such approaches is the number of antigens to be tested in in vivo models. Several laboratories have been trying to refine the original approach in order to get to the identification of the relevant antigens straight from the genome. Here we report a new bioinformatics tool that moves a first step in this direction. The tool has been developed by identifying structural/functional features recurring in known bacterial protective antigens, the so called “Protectome space,” and using such “protective signatures” for protective antigen discovery. In particular, we applied this new approach to Staphylococcus aureus and Group B Streptococcus and we show that not only already known protective antigens were re-discovered, but also two new protective antigens were identified.Although vaccines based on attenuated pathogens as pioneered by Luis Pasteur have been shown to be extremely effective, safety and technical reasons recommend that new generation vaccines include few selected pathogen components which, in combination with immunostimulatory molecules, can induce long lasting protective responses. Such approach implies that the key antigens sufficient to confer protective immunity are singled out among the plethora of pathogen molecules. As it turns out, the search for such protective antigens can be extremely complicated.Genomic technologies have opened the way to new strategies in vaccine antigen discovery (1, 2, 3). Among them, Reverse Vaccinology (RV)1 has proved to be highly effective, as demonstrated by the fact that a new Serogroup B Neisseria meningitidis (MenB) vaccine, incorporating antigens selected by RV, is now available to defeat meningococcal meningitis (4, 5). In essence, RV is based on the simple assumption that cloning all annotated proteins/genes and screening them against a robust and reliable surrogate-of-protection assay must lead to the identification of all protective antigens. Because most of the assays available for protective antigen selection involve animal immunization and challenge, the number of antigens to be tested represents a severe bottleneck of the entire process. For this reason, despite the fact that RV is a brute force, inclusive approach (“test-all-to-lose-nothing” type of approach) in their pioneered work of MenB vaccine discovery, Pizza and co-workers did not test the entire collection of MenB proteins but rather restricted their analysis to the ones predicted to be surface-localized. This was based on the evidence that for an anti-MenB vaccine to be protective bactericidal antibodies must be induced, a property that only surface-exposed antigens have. For the selection of surface antigens Pizza and co-workers mainly used PSORT and other available tools like MOTIFS and FINDPATTERNS to find proteins carrying localization-associated features such as transmembrane domains, leader peptides, and lipobox and outer membrane anchoring motifs. At the end, 570 proteins were selected and entered the still very labor intensive screening phase. Over the last few years, our laboratories have been trying to move to more selective strategies. Our ultimate goal, we like to refer to as the “Holy Grail of Vaccinology,” is to identify protective antigens by “simply” scanning the genome sequence of any given pathogen, thus avoiding time consuming “wet science” and “move straight from genome to the clinic” (6).With this objective in mind, we have developed a series of proteomics-based protocols that, in combination with bioinformatics tools, have substantially reduced the number of antigens to be tested in the surrogate-of-protection assays (7, 8). In particular, we have recently described a three-technology strategy that allows to narrow the number of antigens to be tested in the animal models down to less than ten (9). However, this strategy still requires high throughput experimental activities. Therefore, the availability of in silico tools that selectively and accurately single out relevant categories of antigens among the complexity of pathogen components would greatly facilitate the vaccine discovery process.In the present work, we describe a new bioinformatics approach that brings an additional contribution to our “from genome to clinic” goal. The approach has been developed on the basis of the assumption that protective antigens are protective in that they have specific structural/functional features (“protective signatures”) that distinguish them from immunologically irrelevant pathogen components. These features have been identified by using existing databases and prediction tools, such as PFam and SMART. Our approach focuses on protein biological role rather than its localization: it is completely protein localization unbiased, and lead to the identification of both surface-exposed and secreted antigens (which are the majority in extracellular bacteria) as well as cytoplasmic protective antigens (for instance, antigens that elicit interferon γ producing CD4+ T cells, thus potentiating the killing activity of phagocytic cells toward intracellular pathogens). Should these assumptions be valid, PS could be identified if: (1) all known protective antigens are compiled to create what we refer to as “the Protectome space,” and (2) Protectome is subjected to computer-assisted scrutiny using selected tools. Once signatures are identified, novel protective antigens of a pathogen of interest should be identifiable by scanning its genome sequence in search for proteins that carry one or more protective signatures. A similar attempt has been reported (10), where the discrimination of protective antigens versus nonprotective antigens was tried using statistical methods based on amino acid compositional analysis and auto cross-covariance. This model was implemented in a server for the prediction of vaccine candidates, that is, Vaxijen (www.darrenflower.info/Vaxijen); however, the selection criteria applied are still too general leading to a list of candidates that include ca. 30% of the total genome ORFs very similarly to the number of antigens predicted by classical RV based on the presence of localization signals.Here we show that Protectome analysis unravels specific signatures embedded in protective antigens, most of them related to the biological role/function of the proteins. These signatures narrow down the candidate list to ca. 3% of the total ORFs content and can be exploited for protective antigen discovery. Indeed, the strategy was validated by demonstrating that well characterized vaccine components could be identified by scanning the genome sequence of the corresponding pathogens for the presence of the PS. Furthermore, when the approach was applied to Staphylococcus aureus and Streptococcus agalactiae (Group B Streptococcus, GBS) not only already known protective antigens were rediscovered, but also two new protective antigens were identified.  相似文献   
14.
Climate characteristics appear to play a key role in filtering organisms based on their biological traits. If this trait filtering by climate indeed occurs, it should have effects on the composition, dynamics, taxonomic relatedness and co-occurrence patterns of local assemblages, regardless of the taxonomic group considered. This preliminary study aimed to assess the extent to which environmental variables might determine these patterns in local communities and to evaluate whether the ultimate cross-taxon congruence relationships are consistent across, or dependent on, the selected region. To this end, we studied the bryophyte, macrophyte, macroinvertebrate, and amphibian communities in two clusters of temporary wetlands on the NE Iberian Peninsula under mesothermal and semiarid climates. We observed effects of environmental filtering, with the communities differing between the climatic regions not only in their compositions but also in their dynamics and taxonomic relatedness patterns. Although the cross-taxon congruence in terms of species richness was high in the mesothermal climate, most of the congruent relationships were disrupted in the semiarid environment. Overall, because climate-dependent patterns appear to prevail over climate-consistent ones, we suggest that the use of surrogate taxa may be of limited value when aiming to assess wetland biodiversity across large areas.  相似文献   
15.
16.
An efficient in vitro propagation protocol, applicable both to young and mature explants of two Thymus spp., results in genetically stable plantlets. In vitro-grown shoot tips of Thymus vulgaris L. were exposed to cytokinins (6-benzyladenine, kinetin, and thidiazuron) alone or in combination with auxins, gibberellic acid (GA3) and/or silver nitrate in order to optimize in vitro shoot proliferation. Optimum shoot proliferation (97% regeneration rate, with 8.6 shoots produced per explant) was obtained when semi-solid Murashige and Skoog (MS) medium was supplemented with 1 mg L−1 kinetin and 0.3 mg L−1 GA3. Rooting of the shoots was easily obtained on semi-solid MS medium that was either hormone-free or supplemented with auxins. However, the best root apparatus (92.5% rooting rate, with 19 adventitious roots per shoot) developed on MS medium supplemented with 0.05 mg L−1 2,4-dichlorophenoxyacetic acid. Genetic stability was confirmed in the in vitro-germinated mother plant as well as the shoots that underwent two, four, six, eight, or ten cycles of in vitro subculturing by random amplified polymorphic DNA (RAPD) analysis. When applied to the micropropagation of mature shoot tips of T. longicaulis C. Presl subsp. longicaulis var. subisophyllus (Borbás) Jalas, the optimized in vitro propagation protocol resulted in a 97.5% shoot regeneration rate, with five shoots formed per explant, and 100% rooting. Rooted plantlets of both species were transferred to 250-mL plastic pots and successfully acclimatized by gradually reducing the relative humidity.  相似文献   
17.
BODIPY is an important fluorophores due to its enhanced photophysical and chemical properties including outstanding thermal/photochemical stability, intense absorption/emission profiles, high photoluminescence quantum yield, and small Stokes' shifts. In addition to BODIPY, indole and its derivatives have recently gained attention because of their structural properties and particularly biological importance, therefore these molecules have been widely used in sensing and biosensing applications. Here, we focus on recent studies that reported the incorporation of indole‐based BODIPY molecules as reporter molecules in sensing systems. We highlight the rationale for developing such systems and evaluate detection limits of the developed sensing platforms. Furthermore, we also review the application of indole‐based BODIPY molecules in bioimaging studies. This article includes the evaluation of indole‐based BODIPYs from synthesis to characterization and a comparison of the advantages and disadvantages of developed reporter systems, making it instructive for researchers in various disciplines for the design and development of similar systems.  相似文献   
18.
19.
20.
Isolation, characterization and virulence of the culturable bacteria from entire tissues of larval Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) were studied to obtain new microbes for biological control. A total of 16 bacteria were isolated from living and dead larvae collected from different maize fields in the Eastern Black Sea Region of Turkey. The bacterial microbiota of O. nubilalis were identified as Pseudomonas aeruginosa (On1), Brevundimonas aurantiaca (On2), Chryseobacterium formosense (On3), Acinetobacter sp. (On4), Microbacterium thalassium (On5), Bacillus megaterium (On6), Serratia sp. (On7), Ochrobactrum sp. (On8), Variovorax paradoxus (On9), Corynebacterium glutamicum (On10), Paenibacillus sp. (On11), Alcaligenes faecalis (On12), Microbacterium testaceum (On13), Leucobacter sp. (On14), Leucobacter sp. (On15) and Serratia marcescens (On16) based on their morphological and biochemical characteristics. A partial sequence of the 16S rRNA gene was also determined to confirm strain identification. The highest insecticidal activities were obtained from P. aeruginosa On1 (80%), Serratia sp. On7 (60%), V. paradoxus On9 (50%) and S. marcescens On16 (50%) against larvae 14 days after treatment (p < 0.05). Also, the highest activity from previously isolated Bacillus species was observed from Bacillus thuringiensis subsp. tenebrionis Xd3 with 80% mortality within the same period (p < 0.05). Our results indicate that P. aeruginosa On1, Serratia sp. On7, V. paradoxus On9, S. marcescens On16 and B. thuringiensis subsp. tenebrionis Xd3 show potential for biocontrol of O. nubilalis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号