首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   29篇
  177篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2016年   4篇
  2015年   10篇
  2014年   8篇
  2013年   5篇
  2012年   3篇
  2011年   11篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1992年   4篇
  1991年   8篇
  1990年   1篇
  1987年   6篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1979年   4篇
  1978年   1篇
  1977年   9篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1968年   2篇
  1967年   4篇
  1965年   1篇
  1962年   1篇
排序方式: 共有177条查询结果,搜索用时 0 毫秒
91.
92.
93.
Pelvic organ prolapse(POP) occurs when the pelvic organs(bladder, bowel or uterus) herniate into the vagina, causing incontinence, voiding, bowel and sexual dysfunction, negatively impacting upon a woman's quality of life. POP affects 25% of all women and results from childbirth injury. For 19% of all women, surgical reconstructive surgery is required for treatment, often augmented with surgical mesh. The surgical treatment fails in up to 30% of cases or results in adverse effects, such as pain and mesh erosion into the bladder, bowel or vagina. Due to these complications the Food and Drug Administration cautioned against the use of vaginal mesh and several major brands have been recently been withdrawn from market. In this review we will discuss new cell-based approaches being developed for the treatment of POP. Several cell types have been investigated in animal models, including a new source of mesenchymal stem/stromal cells(MSC) derived from human endometrium. The unique characteristics of endometrial MSC, methods for their isolation and purification and steps towards their development for good manufacturing practice production will be described. Animal models that could be used to examine the potential for this approach will also be discussed as will a rodent model showing promise in developing an endometrial MSC-based therapy for POP. The development of a preclinical large animal model for assessing tissue engineering constructs for treating POP will also be mentioned.  相似文献   
94.
Intestinal development during late embryogenesis and early post-hatch has a long-term influence on digestive and absorptive capacity in chickens. The objective of this research was to obtain a global view of intestinal solute carrier (SLC) gene family member expression from late embryogenesis until 2 weeks post-hatch with a focus on SLC genes involved in uptake of sugars and amino acids. Small intestine samples from male chicks were collected on embryonic days 18 (E18) and 20 (E20), day of hatch and days 1, 3, 7 and 14 post-hatch. The expression profiles of 162 SLC genes belonging to 41 SLC families were determined using Affymetrix chicken genome microarrays. The majority of SLC genes showed little or no difference in level of expression during E18–D14. A number of well-known intestinal transporters were upregulated between E18 and D14 including the amino acid transporters rBAT , y + LAT-2 and EAAT3 , the peptide transporter PepT1 and the sugar transporters SGLT1 , GLUT2 and GLUT5 . The amino acid transporters CAT-1 and CAT-2 were downregulated. In addition, several glucose and amino acid transporters that are novel to our understanding of nutrient absorption in the chicken intestine were discovered through the arrays ( SGLT6 , SNAT1 , SNAT2 and AST ). These results represent a comprehensive characterization of the expression profiles of the SLC family of genes at different stages of development in the chicken intestine and lay the ground work for future nutritional studies.  相似文献   
95.
The difficulty in studying nonbreeding birds means that little is known about them or their resource requirements, despite forming a large and significant component of a population. One way to assess food requirements is to examine changes in body mass, because it indicates the amount of food acquired. In terms of body mass changes, our expectation is that nonbreeders will either (a) be in poorer condition than the breeders which potentially explains why they do not breed or (b) remain at a stable higher mass as they are unconstrained by the physiological costs associated with rearing chicks. Here, we interrogate body mass datasets of breeding and nonbreeding birds of two penguin species to assess these predictions and determine whether differences in mass exist between these two groups throughout the breeding season. The first dataset is from a wild Adélie penguin population, where bird mass was recorded automatically and breeding status determined from a resighting program. A second population of captive gentoo penguins were weighed regularly each breeding season. We demonstrate that although there were times in each year when breeders were heavier than their nonbreeding counterparts for both populations, the mass changes showed qualitatively similar patterns throughout the breeding season irrespective of breeding status. Heavier breeders at times during the breeding season are not unexpected but the overall similar pattern of mass change irrespective of breeding status is in contrast to expectations. It appears that breeding status per se and the constraints that breeding places on birds are not the only driver of changes in mass throughout the breeding season and, although not explicitly studied here, the role of hormones in driving changes in appetite could be key to explain these results. These results present a significant step toward understanding food requirements of nonbreeders in avian populations.  相似文献   
96.
It is widely accepted that global warming will adversely affect ecological communities. As ecosystems are simultaneously exposed to other anthropogenic influences, it is important to address the effects of climate change in the context of many stressors. Nutrient enrichment might offset some of the energy demands that warming can exert on organisms by stimulating growth at the base of the food web. It is important to know whether indirect effects of warming will be as ecologically significant as direct physiological effects. Declining body size is increasingly viewed as a universal response to warming, with the potential to alter trophic interactions. To address these issues, we used an outdoor array of marine mesocosms to examine the impacts of warming, nutrient enrichment and altered top‐predator body size on a community comprised of the predator (shore crab Carcinus maenas), various grazing detritivores (amphipods) and algal resources. Warming increased mortality rates of crabs, but had no effect on their moulting rates. Nutrient enrichment and warming had near diametrically opposed effects on the assemblage, confirming that the ecological effects of these two stressors can cancel each other out. This suggests that nutrient‐enriched systems might act as an energy refuge to populations of species under metabolic constraints due to warming. While there was a strong difference in assemblages between mesocosms containing crabs compared to mesocosms without crabs, decreasing crab size had no detectable effect on the amphipod or algal assemblages. This suggests that in allometrically balanced communities, the expected long‐term effect of warming (declining body size) is not of similar ecological consequence to the direct physiological effects of warming, at least not over the six week duration of the experiment described here. More research is needed to determine the long‐term effects of declining body size on the bioenergetic balance of natural communities.  相似文献   
97.
Loss of species will directly change the structure and potentially the dynamics of ecological communities, which in turn may lead to additional species loss (secondary extinctions) due to direct and/or indirect effects (e.g. loss of resources or altered population dynamics). Furthermore, the vulnerability of food webs to repeated species loss is expected to be affected by food web topology, species interactions, as well as the order in which species go extinct. Species traits such as body size, abundance and connectivity might determine a species’ vulnerability to extinction and, thus, the order in which species go primarily extinct. Yet, the sequence of primary extinctions, and their effects on the vulnerability of food webs to secondary extinctions, when species abundances are allowed to respond dynamically, has only recently become the focus of attention. Here, we analyse and compare topological and dynamical robustness to secondary extinctions of model food webs, in the face of 34 extinction sequences based on species traits. Although secondary extinctions are frequent in the dynamical approach and rare in the topological approach, topological and dynamical robustness tends to be correlated for many bottom–up directed, but not for top–down directed deletion sequences. Furthermore, removing species based on traits that are strongly positively correlated to the trophic position of species (such as large body size, low abundance, high net effect) is, under the dynamical approach, found to be as destructive as removing primary producers. Such top–down oriented removal of species are often considered to correspond to realistic extinction scenarios, but earlier studies, based on topological approaches, have found such extinction sequences to have only moderate effects on the remaining community. Thus, our result suggests that the structure of ecological communities, and therefore the integrity of important ecosystem processes could be more vulnerable to realistic extinction sequences than previously believed.  相似文献   
98.
The arboreal crab Parasesarma leptosoma has been recently discovered at Mngazana, a southerly mangrove system in southern Africa, where crab tree preferences were studied using an indirect (browse leaf damage) and a direct (tree traps) method. The extent of crab induced leaf damage was compared for three mangrove species at two sites, one next to a tidal creek and one away from the creek. Using ANOVA, significant differences were found between tree species (P < 0.001) at different distances from the creek (P < 0.022). Crabs were found to occur on Rhizophora mucronata and Brugueira gymnorrhiza, but not on Avicennia marina. This reflected a gradient in browsing, from well-browsed R. mucronata (100% near the creek and 25.7% away from the creek), to medium browsing of B. gymnorrhiza (51.5% near and 0% away) and no browsing on A. marina (near or away). These differences could be explained in terms of palatability, as both R. mucronata and B. gymnorrhiza are salt excluders, while A. marina secretes salt from its leaves. Leaf consumption levels averaged between 1.73% and 2.6% of leaf area for R. mucronata and 0–1.76% for B. gymnorrhiza. For both R. mucronata and B. gymnorrhiza there was a significant correlation between the number of crabs caught directly and the amount of browse leaf damage (P < 0.01). Crab number was also significantly correlated with tree circumference for R. mucronata (r 2 = 0.67) and B. gymnorrhiza (r 2 = 0.76, P < 0.05), with crabs more prevalent on the former tree species and no crabs trapped on A. marina (91.7%, 38.3% and 0% catches, respectively), thus reflecting the results obtained by the indirect method. Total Nitrogen and Phosphate were measured for both sediment and leaves of the three mangrove species at the two sites. Leaf comparisons showed significant differences (P < 0.01) for both Total Nitrogen and Phosphate with R. mucronata having the highest values, followed by A. marina and lastly B. gymnorrhiza. Total Nitrogen was significantly higher for both B. gymnorrhiza and R. mucronata compared with A. marina, while leaf phosphate was significantly lower for B. gymnorrhiza when compared with both R. mucronata and A. marina. No significant differences were found for leaf nutrients between sites, with the exception of A. marina and R. mucronata Total Nitrogen, which was significantly higher at the near creek sites (P < 0.05). Sediment analysis showed no significant differences (P > 0.05) in either nutrients or median particle size. Thus, R. mucronata, especially near the creek, had higher nutrient value and was probably more palatable and could explain observed differences in crab distribution. Very little browse damage was encountered in saplings below 10 cm. Most poles chopped by the local communities are R. mucronata in the 15–20 cm category, which coincides with peak crab frequencies in the 15–25 cm size classes for R. mucronata and B. gymnorrhiza, so that this selective harvesting is affecting this crab population maximally. Predictions were made as to the effect of crab loss, tree replacement rate and alternatives to chopping, which would boost community socio-economic levels and reduce the anthropogenic pressure on this biodiverse southerly mangrove system.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号