首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1529篇
  免费   155篇
  1684篇
  2023年   8篇
  2022年   23篇
  2021年   29篇
  2020年   21篇
  2019年   21篇
  2018年   32篇
  2017年   25篇
  2016年   43篇
  2015年   76篇
  2014年   79篇
  2013年   103篇
  2012年   133篇
  2011年   115篇
  2010年   69篇
  2009年   84篇
  2008年   115篇
  2007年   88篇
  2006年   113篇
  2005年   93篇
  2004年   95篇
  2003年   112篇
  2002年   84篇
  2001年   15篇
  2000年   9篇
  1999年   24篇
  1998年   16篇
  1997年   10篇
  1996年   6篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1972年   1篇
排序方式: 共有1684条查询结果,搜索用时 15 毫秒
71.
72.
Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L−1) or elevated (800 μmol mol−1) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus. Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature events changes, this is unlikely to increase risk of freezing damage in P. strobus seedlings.Land surface temperature is increasing, particularly in the northern hemisphere (IPCC, 2014), which is dominated by boreal and temperate forests. At higher latitudes, trees rely on temperature and photoperiod cues to detect changing seasons and to trigger cessation of growth and cold hardening during the autumn (Ensminger et al., 2015). For boreal and temperate evergreen conifers, cold hardening involves changes in carbohydrate metabolism, down-regulation of photosynthesis, accumulation of cryoprotective metabolites, and development of freezing tolerance (Crosatti et al., 2013; Ensminger et al., 2015). These processes minimize freezing damage and enable conifers to endure winter stresses. However, rising temperatures result in asynchronous phasing of temperature and photoperiod characterized by delayed arrival of first frosts (McMahon et al., 2010), which may impact the onset and development of cold hardening during autumn.Short photoperiod induces the cessation of growth in many tree species (Downs and Borthwick, 1956; Heide, 1974; Repo et al., 2000; Böhlenius et al., 2006). As a consequence, carbon demand in sink tissue decreases toward the end of the growing season, and the bulk of photoassimilate is translocated from source tissues to storage tissues (Hansen and Beck, 1994; Oleksyn et al., 2000). In addition, cryoprotective soluble sugars, including sucrose, raffinose, and pinitol, accumulate in leaf tissues to enhance freezing tolerance (Strimbeck et al., 2008; Angelcheva et al., 2014). Thus, by winter, leaf nonstructural carbohydrates are mainly comprised of mono- and oligosaccharides, and only minimal levels of starch remain (Hansen and Beck, 1994; Strimbeck et al., 2008). The concurrent decrease of photoassimilate and demand for metabolites that occur during the cessation of growth also impacts the citric acid cycle that mediates between photosynthesis, respiration, and protein synthesis. The citric acid cycle generates NADH to fuel ATP synthesis via mitochondrial electron transport, as well as amino acid precursors (Shi et al., 2015). In C3 plants, the enzyme phosphoenolpyruvate carboxylase (PEPC) converts phosphoenolpyruvate to oxaloacetic acid in order to supplement the flow of metabolites to the citric acid cycle and thus controls the regulation of respiration and photosynthate partitioning (O’Leary et al., 2011).Cessation of growth, low temperature, and presumably short photoperiod decrease the metabolic sink for photoassimilates, resulting in harmful excess light energy (Öquist and Huner, 2003; Ensminger et al., 2006) and increased generation of reactive oxygen species (Adams et al., 2004). During autumn and the development of cold hardiness, conifers reconfigure the photosynthetic apparatus in order to avoid formation of excess light and reactive oxygen species. This involves a decrease in chlorophylls and PSII reaction center core protein D1 (Ottander et al., 1995; Ensminger et al., 2004; Verhoeven et al., 2009), as well as aggregation of light-harvesting complex proteins (Ottander et al., 1995; Busch et al., 2007). Additionally, photoprotective carotenoid pigments accumulate in leaves, especially the xanthophylls, zeaxanthin, and lutein that contribute to nonphotochemical quenching (NPQ) via thermal dissipation of excess light energy (Busch et al., 2007; Verhoeven et al., 2009; Demmig-Adams et al., 2012). Prolonged exposure to low temperature induces sustained nonphotochemical quenching (NPQS), where zeaxanthin constitutively dissipates excess light energy (Ensminger et al., 2004; Demmig-Adams et al., 2012; Fréchette et al., 2015).In conifers, freezing tolerance is initiated during early autumn in response to decreasing photoperiod (Rostad et al., 2006; Chang et al., 2015) and continues to develop through late autumn in response to the combination of short photoperiod and low temperature (Strimbeck and Schaberg, 2009; Chang et al., 2015). In addition to changes in carbohydrate content, freezing tolerance also involves the expression of specific dehydrins (Close, 1997; Kjellsen et al., 2013). Members of the dehydrin protein family are involved in responses to osmotic, salt, and freezing stress (Close, 1996). Dehydrins have been associated with improved freezing tolerance in many species including spinach (Kaye et al., 1998), strawberry (Houde et al., 2004), cucumber (Yin et al., 2006), peach (Wisniewski et al., 1999), birch (Puhakainen et al., 2004), and spruce (Kjellsen et al., 2013). In angiosperms, a characteristic Lys-rich dehydrin motif known as the K-segment interacts with lipids to facilitate membrane binding (Koag et al., 2003; Eriksson et al., 2011). Several in vitro studies have demonstrated dehydrin functions including prevention of aggregation and unfolding of enzymes (using Vitis riparia; Hughes and Graether, 2011), radical scavenging (using Citrus unshiu; Hara et al., 2004), and suppression of ice crystal formation (using Prunus persica; Wisniewski et al., 1999). To date, dehydrin functions have not been demonstrated in planta.Rising temperatures since the mid-twentieth century have delayed the onset of autumn dormancy and increased length of the growing season in forests across the northern hemisphere (Boisvenue and Running, 2006; Piao et al., 2007; McMahon et al., 2010). Studies have shown that elevated temperatures ranging from +4°C to +20°C above ambient can delay down-regulation of photosynthesis in several evergreen conifers. Consistent findings were apparent among climate-controlled chamber studies exposing Pinus strobus seedlings to a sudden shift in temperature and/or photoperiod (Fréchette et al., 2016), as well as chamber studies exposing Picea abies seedlings to simulated autumn conditions using a gradient of decreasing temperature and photoperiod (Stinziano et al., 2015). Similar findings were also demonstrated in open-top chamber experiments exposing mature Pinus sylvestris to a gradient of decreasing temperature and natural photoperiod (Wang, 1996). Elevated temperature (+4°C above ambient) also impaired cold hardening in Pseudotsuga menziesii seedlings (Guak et al., 1998) and mature P. sylvestris (Repo et al., 1996) exposed to a decreasing gradient of temperature and natural photoperiod using open-top chambers. In contrast, a recent study showed that smaller temperature increments (+1.5°C to +3°C) applied using infrared heaters did not delay down-regulation of photosynthesis or impair freezing tolerance in field-grown P. strobus seedlings that were acclimated to larger diurnal and seasonal temperature variations (Chang et al., 2015). For many tree species, photoperiod determines cessation of growth (Tanino et al., 2010; Petterle et al., 2013), length of the growing season (Bauerle et al., 2012), and development of cold hardiness (Welling et al., 1997; Li et al., 2003; Rostad et al., 2006). However, the effects of climate warming on tree phenology are complex and can be unpredictable due to species- and provenance-specific differences in sensitivity to photoperiod and temperature cues (Körner and Basler, 2010; Basler and Körner, 2012; Basler and Körner, 2014).The effect of elevated CO2 further increases uncertainties in the response of trees to warmer climate. Similar to warmer temperature, elevated CO2 may also delay the down-regulation of photosynthesis in evergreens and extend the length of the growing season, as demonstrated in mature P. sylvestris (Wang, 1996). Elevated CO2 increases carbon assimilation (Curtis and Wang, 1998; Ainsworth and Long, 2005) and biomass production (Ainsworth and Long, 2005) during the growing season. The effects could continue during the autumn if dormancy or growth cessation is delayed, which suggests that elevated CO2 may increase annual carbon uptake. However, long-term exposure to elevated CO2 can also down-regulate photosynthesis during the growing season (Ainsworth and Long, 2005). Prior studies that have attempted to determine the impact of a combination of elevated CO2 and/or temperature on cold hardening in evergreens have largely focused on freezing tolerance, with contrasting results. Open-top chamber experiments showed that a combination of elevated temperature and CO2 both delayed and impaired freezing tolerance of P. menziesii seedlings (Guak et al., 1998) and evergreen broadleaf Eucalyptus pauciflora seedlings (Loveys et al., 2006) but did not affect freezing tolerance of mature P. sylvestris (Repo et al., 1996). A recent field experiment examining mature trees revealed that Larix decidua, but not Pinus mugo, exhibited enhanced freezing damage following six years of exposure to combined soil warming and elevated CO2 (Rixen et al., 2012). In contrast, a climate-controlled study showed that exposure to elevated CO2 advanced the date of bud set and improved freezing tolerance in Picea mariana seedlings (Bigras and Bertrand, 2006). In a second study on similar seedlings conducted by the same authors, exposure of trees to elevated CO2 also enhanced freezing tolerance but impaired the accumulation of sucrose and raffinose (Bertrand and Bigras, 2006). These previous experiments used experimental conditions where temperature and photoperiod gradually decreased. While this approach aims to mimic natural conditions, it is difficult to distinguish specific responses to either photoperiod or temperature. Because of the contrasting findings from previous studies, we designed an experiment aiming to separate the effects of photoperiod, temperature, and CO2 on a wide range of parameters that are involved in cold hardening in conifers.Our study aimed to determine (1) how induction and development of the cold hardening process is affected by a shift from long to short photoperiod under warm conditions and (2) how the combination of warm air temperature and elevated CO2 affects photoperiod-induced cold hardening processes in Eastern white pine (P. strobus). To assess the development of cold hardening, we measured photosynthetic rates, changes in leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening over 36 d. Assuming that both low temperature and short photoperiod cues are required to induce cold hardening in conifers, we hypothesized that warm temperature and the combination of warm temperature and elevated CO2 would prevent seedlings growing under autumn photoperiod from down-regulating photosynthesis. We further hypothesized that warm temperature and the combination of warm temperature and elevated CO2 would impair the development of freezing tolerance, due to a lack of adequate phasing of the low temperature and short photoperiod signals.  相似文献   
73.
A new method for the rapid and accurate detection of pathogenic Naegleria fowleri amoebae in surface environmental water was developed. The method is based on an immunofluorescent assay combined with detection by solid-phase cytometry. In this study we developed and compared two protocols using different reporter systems conjugated to antibodies. The monoclonal antibody Ac5D12 was conjugated with biotin and horseradish peroxidase, and the presence of cells was revealed with streptavidin conjugated to both R-phycoerythrin and cyanine Cy5 (RPE-Cy5) and tyramide-fluorescein isothiocyanate, respectively. The RPE-Cy5 protocol was the most efficient protocol and allowed the detection of both trophozoite and cyst forms in water. The direct counts obtained by this new method were not significantly different from those obtained by the traditional culture approach, and results were provided within 3 h. The sensitivity of the quantitative method is 200 cells per liter. The limit is due only to the filtration capacity of the membrane used.  相似文献   
74.
75.
Environmental Biology of Fishes - Cortisol is recognized as a physiological indicator of stress in fish. However, this hormone is typically measured in plasma samples. In this study, cortisol...  相似文献   
76.
ABCA7, a close relative of ABCA1 which facilitates cholesterol efflux to lipid-poor apoproteins, has been implicated in macrophage lipid efflux and clearance of apoptotic cells in in vitro studies. In the current study, we investigated the in vivo effects of macrophage ABCA7 deficiency on lipid metabolism and atherosclerosis. Chimeras with dysfunctional ABCA7 in macrophages and other blood cells were generated by transplantation of bone marrow from ABCA7 knockout (KO) mice into irradiated low-density lipoprotein receptor (LDLr) KO mice. Unexpectedly, macrophage ABCA7 deficiency did not significantly affect atherosclerosis susceptibility of LDLr KO mice after 10 weeks Western-type diet feeding. However, ABCA7 deficiency was associated with 2-fold (p<0.05) higher macrophage ABCA1 mRNA expression levels. Combined disruption of ABCA1 and ABCA7 in bone-marrow-derived cells increased atherosclerotic lesion development (1.5-fold (p>0.05) as compared to wild type transplanted mice. However, single deletion of ABCA1 had a similar effect (1.8-fold, p<0.05). Macrophage foam cell accumulation in the peritoneal cavity was reduced in ABCA1/ABCA7 dKO transplanted animals as compared to single ABCA1 KO transplanted mice, which was associated with increased ABCG1 expression. Interestingly, spleens of ABCA1/ABCA7 double KO transplanted mice were significantly larger as compared to the other 3 groups and showed massive macrophage lipid accumulation, a reduction in CD3+ T-cells, and increased expression of key regulators of erythropoiesis. In conclusion, deletion of ABCA7 in bone marrow-derived cells does not affect atherogenesis in the arterial wall neither in the absence or presence of ABCA1. Interestingly, combined deletion of bone marrow ABCA1 and ABCA7 causes severe splenomegaly associated with cellular lipid accumulation, a reduction in splenic CD3+ T cells, and induced markers of erythropoeisis. Our data indicate that ABCA7 may play a role in T cell proliferation and erythropoeisis in spleen.  相似文献   
77.
Meiotic DNA double-strand breaks (DSBs) initiate crossover (CO) recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs). Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events. We performed this analysis in a SK1 × S288C Saccharomyces cerevisiae hybrid lacking the mismatch repair (MMR) protein Msh2, to allow efficient detection of heteroduplex DNAs (hDNAs). First, we observed that the anti-recombinogenic activity of MMR is responsible for a 20% drop in CO number, suggesting that in MMR-proficient cells some DSBs are repaired using the sister chromatid as a template when polymorphisms are present. Second, we observed that a large fraction of NCOs were associated with trans-hDNA tracts constrained to a single chromatid. This unexpected finding is compatible with dissolution of double Holliday junctions (dHJs) during repair, and it suggests the existence of a novel control point for CO formation at the level of the dHJ intermediate, in addition to the previously described control point before the dHJ formation step. Finally, we observed that COs are associated with complex hDNA patterns, confirming that the canonical double-strand break repair model is not sufficient to explain the formation of most COs. We propose that multiple factors contribute to the complexity of recombination intermediates. These factors include repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration. Finally, the good correlation between the strand transfer properties observed in the absence of and in the presence of Msh2 suggests that the intermediates detected in the absence of Msh2 reflect normal intermediates.  相似文献   
78.
79.
Dictyostelium discoideum DNA fragments have been inserted into the chimeric bacterium-yeast plasmid YEp13. Recombinant plasmids were used to transform yeast using a strain of Saccharomyces cerevisiae deficient in OMP decarboxylase activity. Several clones were selected for growth in uracil-free medium. One clone was further analysed and contains a plasmid with a segment of D. discoideum DNA which complements a yeast ura3 mutation.  相似文献   
80.
The aged systemic milieu promotes cellular and cognitive impairments in the hippocampus. Here, we report that aging of the hematopoietic system directly contributes to the pro‐aging effects of old blood on cognition. Using a heterochronic hematopoietic stem cell (HSC) transplantation model (in which the blood of young mice is reconstituted with old HSCs), we find that exposure to an old hematopoietic system inhibits hippocampal neurogenesis, decreases synaptic marker expression, and impairs cognition. We identify a number of factors elevated in the blood of young mice reconstituted with old HSCs, of which cyclophilin A (CyPA) acts as a pro‐aging factor. Increased systemic levels of CyPA impair cognition in young mice, while inhibition of CyPA in aged mice improves cognition. Together, these data identify age‐related changes in the hematopoietic system as drivers of hippocampal aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号