首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3278篇
  免费   252篇
  国内免费   1篇
  2024年   3篇
  2023年   21篇
  2022年   36篇
  2021年   78篇
  2020年   63篇
  2019年   58篇
  2018年   97篇
  2017年   75篇
  2016年   101篇
  2015年   185篇
  2014年   184篇
  2013年   226篇
  2012年   296篇
  2011年   290篇
  2010年   164篇
  2009年   168篇
  2008年   223篇
  2007年   233篇
  2006年   171篇
  2005年   159篇
  2004年   146篇
  2003年   139篇
  2002年   128篇
  2001年   33篇
  2000年   13篇
  1999年   26篇
  1998年   26篇
  1997年   24篇
  1996年   14篇
  1995年   18篇
  1994年   15篇
  1993年   10篇
  1992年   8篇
  1991年   9篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   7篇
  1980年   8篇
  1979年   7篇
  1978年   7篇
  1977年   3篇
  1976年   3篇
  1974年   6篇
  1969年   3篇
排序方式: 共有3531条查询结果,搜索用时 46 毫秒
101.
Investigating how interactions among plants depend on environmental conditions is key to understand and predict plant communities’ response to climate change. However, while many studies have shown how direct interactions change along climatic gradients, indirect interactions have received far less attention. In this study, we aim at contributing to a more complete understanding of how biotic interactions are modulated by climatic conditions. We investigated both direct and indirect effects of adult tree canopy and ground vegetation on seedling growth and survival in five tree species in the French Alps. To explore the effect of environmental conditions, the experiment was carried out at 10 sites along a climatic gradient closely related to temperature. While seedling growth was little affected by direct and indirect interactions, seedling survival showed significant patterns across multiple species. Ground vegetation had a strong direct competitive effect on seedling survival under warmer conditions. This effect decreased or shifted to facilitation at lower temperatures. While the confidence intervals were wider for the effect of adult canopy, it displayed the same pattern. The monitoring of micro‐environmental conditions revealed that competition by ground vegetation in warmer sites could be related to reduced water availability; and weak facilitation by adult canopy in colder sites to protection against frost. For a cold‐intolerant and shade‐tolerant species (Fagus sylvatica), adult canopy indirectly facilitated seedling survival by suppressing ground vegetation at high temperature sites. The other more cold tolerant species did not show this indirect effect (Pinus uncinata, Larix decidua and Abies alba). Our results support the widely observed pattern of stronger direct competition in more productive climates. However, for shade tolerant species, the effect of direct competition may be buffered by tree canopies reducing the competition of ground vegetation, resulting in an opposite trend for indirect interactions across the climatic gradient.  相似文献   
102.
The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) ‘Bright Yellow 2’ cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.Eukaryotic plasma membranes (PMs) are composed of three main classes of lipids, glycerolipids, sphingolipids, and sterols, which may account for up to 100,000 different molecular species (Yetukuri et al., 2008; Shevchenko and Simons, 2010). Overall, all glycerolipids share the same molecular moieties in plants, animals, and fungi. By contrast, sterols and sphingolipids are different and specific to each kingdom. For instance, the plant PM contains an important number of sterols, among which β-sitosterol, stigmasterol, and campesterol predominate (Furt et al., 2011). In addition to free sterols, phytosterols can be conjugated to form steryl glycosides (SG) and acyl steryl glycosides (ASG) that represent up to approximately 15% of the tobacco (Nicotiana tabacum) PM (Furt et al., 2010). As for sphingolipids, sphingomyelin, the major phosphosphingolipid in animals, which harbors a phosphocholine as a polar head, is not detected in plants. Glycosyl inositol phosphorylceramides (GIPCs) are the major class of sphingolipids in plants, but they are absent in animals (Sperling and Heinz, 2003; Pata et al., 2010). Sphingolipidomic approaches identified up to 200 plant sphingolipids (for review, see Pata et al., 2010; Cacas et al., 2013).Although GIPCs belong to one of the earliest classes of plant sphingolipids that were identified in the late 1950s (Carter et al., 1958), only a few GIPCs have been structurally characterized to date because of their high polarity and a limited solubility in typical lipid extraction solvents. For these reasons, they were systematically omitted from published plant PM lipid composition. GIPCs are formed by the addition of an inositol phosphate to the ceramide moiety, the inositol headgroup of which can then undergo several glycosylation steps. The dominant glycan structure, composed of a hexose-GlcA linked to the inositol, is called series A. Polar heads containing three to seven sugars, so-called series B to F, have been identified and appeared to be species specific (Buré et al., 2011; Cacas et al., 2013; Mortimer et al., 2013). The ceramide moiety of GIPCs consists of a long-chain base (LCB), mainly t18:0 (called phytosphingosine) or t18:1 compounds (for review, see Pata et al., 2010), to which is amidified a very-long-chain fatty acid (VLCFA), the latter of which is mostly 2-hydroxylated (hVLCFA) with an odd or even number of carbon atoms. In plants, little is known about the subcellular localization of GIPCs. It is assumed, however, that they would be highly represented in the PM (Worrall et al., 2003; Sperling et al., 2005), even if this remains to be experimentally proven. The main argument supporting such an assumption is the strong enrichment of trihydroxylated LCB (t18:n) in detergent-insoluble membrane (DIM) fractions (Borner et al., 2005; Lefebvre et al., 2007), LCB being known to be predominant in GIPC’s core structure as aforementioned.In addition to this chemical complexity, lipids are not evenly distributed within the PM. Sphingolipids and sterols can preferentially interact with each other and segregate to form microdomains dubbed the membrane raft (Simons and Toomre, 2000). The membrane raft hypothesis suggests that lipids play a regulatory role in mediating protein clustering within the bilayer by undergoing phase separation into liquid-disordered and liquid-ordered phases. The liquid-ordered phase, termed the membrane raft, was described as enriched in sterol and saturated sphingolipids and is characterized by tight lipid packing. Proteins, which have differential affinities for each phase, may become enriched in, or excluded from, the liquid-ordered phase domains to optimize the rate of protein-protein interactions and maximize signaling processes. In animals, rafts have been implicated in a huge range of cellular processes, such as hormone signaling, membrane trafficking in polarized epithelial cells, T cell activation, cell migration, and the life cycle of influenza and human immunodeficiency viruses (Simons and Ikonen, 1997; Simons and Gerl, 2010). In plants, evidence is increasing that rafts are also involved in signal transduction processes and membrane trafficking (for review, see Mongrand et al., 2010; Simon-Plas et al., 2011; Cacas et al., 2012a).Moreover, lipids are not evenly distributed between the two leaflets of the PM. Within the PM of eukaryotic cells, sphingolipids are primarily located in the outer monolayer, whereas unsaturated phospholipids are predominantly exposed on the cytosolic leaflet. This asymmetrical distribution has been well established in human red blood cells, in which the outer leaflet contains sphingomyelin, phosphatidylcholine, and a variety of glycolipids like gangliosides. By contrast, the cytoplasmic leaflet is composed mostly of phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and their phosphorylated derivatives (Devaux and Morris, 2004). With regard to sphingolipids and glycerolipids, the asymmetry of the former is established during their biosynthesis and that of the latter requires ATPases such as the aminophospholipid translocase that transports lipids from the outer to the inner leaflet as well as multiple drug resistance proteins that transport phosphatidylcholine in the opposite direction (Devaux and Morris, 2004). This ubiquitous scheme encountered in animal cells could apply in plant cells as proposed (Tjellstrom et al., 2010). Indeed, the authors showed that there is a pronounced transverse lipid asymmetry in root at the PM. Phospholipids and galactolipids dominate the cytosolic leaflet, whereas the apoplastic leaflet is enriched in sphingolipids and sterols.From such a high diversity of the plant PM thus arises the question of the respective contribution of lipids to membrane suborganization. Our group recently tackled this aspect by characterizing the order level of liposomes prepared from various plant lipids and labeled with the environment-sensitive probe di-4-ANEPPDHQ (Grosjean et al., 2015). Fluorescence spectroscopy experiments showed that, among phytosterols, campesterol exhibits the strongest ability to order model membranes. In agreement with these data, spatial analysis of the membrane organization through multispectral confocal microscopy pointed to the strong ability of campesterol to promote liquid-ordered domain formation and organize their spatial distribution at the membrane surface. Conjugated sterols also exhibit a striking ability to order membranes. In addition, GIPCs enhance the sterol-induced ordering effect by emphasizing the formation and increasing the size of sterol-dependent ordered domains.The aim of this study was to reinvestigate the lipid composition and organization of the PM with a particular focus on GIPCs using tobacco leaves and cv Bright Yellow 2 (BY-2) cell cultures as models. Analyzing all membrane lipid classes at once, including sphingolipids, is challenging because they all display dramatically different chemical polarity, from very apolar (like free sterols) to highly polar (like polyglycosylated GIPCs) molecules. Most lipid extraction techniques published thus far use a chloroform/methanol mixture and phase partition to remove contaminants, resulting in the loss GIPCs, which remain in the aqueous phase, unextracted in the insoluble pellet, or at the interphase (Markham et al., 2006). In order to gain access to both glycerolipid and sphingolipid species at a glance, we developed a protocol whereby the esterifed or amidified fatty acids were hydrolyzed from the glycerol backbone (glycerolipids) or the LCB (sphingolipids) of membrane lipids, respectively. Fatty acids were then analyzed by gas chromatography-mass spectrometry (GC-MS) with appropriate internal standards for quantification. We further proposed that the use of methyl tert-butyl ether (MTBE) ensures the extraction of all classes of plant polar lipids. Our results indicate that GIPCs represent up to 40 mol % of total tobacco PM lipids. Interestingly, polyglycolyslated GIPCs are 5-fold enriched in DIMs of BY-2 cells when compared with the PM. Further investigation led us to develop a preparative purification procedure that allowed us to obtain enough material to raise antibodies against GIPCs. Using immunogold labeling on PM vesicles, it was found that polyglycosylated GIPCs cluster in membrane nanodomains, strengthening the idea that lateral nanosegregation of sphingolipids takes place at the PM in plants. Multispectral confocal microscopy was performed on vesicles prepared using GIPCs, phospholipids, and sterols and labeled with the environment-sensitive probe di-4-ANEPPDHQ. Our results show that, despite different fatty acid and polar head compositions, GIPCs extracted from tobacco leaves and BY-2 cells have a similar intrinsic propensity of enhancing vesicle global order together with sterols. Assuming that GIPCs are mostly present in the outer leaflet of the PM, interactions between sterols and sphingolipids were finally studied by the Langmuir monolayer technique, and the area of a single molecule of GIPC, or in interaction with phytosterols, was calculated. Using the calculation docking method, the energy of interaction between GIPCs and phytosterols was determined. A model was proposed in which GIPCs and phytosterols interact together to form liquid-ordered domains and in which the VLCFAs of GIPCs promote the interdigitation of the two membrane leaflets. The implications of domain formation and the asymmetrical distribution of lipids at the PM in plants are also discussed. Finally, we propose a model that reconsiders the intricate organization of the plant PM bilayer.  相似文献   
103.
Altered molecular responses to insulin and growth factors (GF) are responsible for late‐life shortening diseases such as type‐2 diabetes mellitus (T2DM) and cancers. We have built a network of the signaling pathways that control S‐phase entry and a specific type of senescence called geroconversion. We have translated this network into a Boolean model to study possible cell phenotype outcomes under diverse molecular signaling conditions. In the context of insulin resistance, the model was able to reproduce the variations of the senescence level observed in tissues related to T2DM's main morbidity and mortality. Furthermore, by calibrating the pharmacodynamics of mTOR inhibitors, we have been able to reproduce the dose‐dependent effect of rapamycin on liver degeneration and lifespan expansion in wild‐type and HER2–neu mice. Using the model, we have finally performed an in silico prospective screen of the risk–benefit ratio of rapamycin dosage for healthy lifespan expansion strategies. We present here a comprehensive prognostic and predictive systems biology tool for human aging.  相似文献   
104.
105.
106.

The large French research project GENIUS (2012–2019, https://www6.inra.genius-project_eng/) provides a good showcase of current genome editing techniques applied to crop plants. It addresses a large variety of agricultural species (rice, wheat, maize, tomato, potato, oilseed rape, poplar, apple and rose) together with some models (Arabidopsis, Brachypodium, Physcomitrella). Using targeted mutagenesis as its work horse, the project is limited to proof of concept under confined conditions. It mainly covers traits linked to crop culture, such as disease resistance to viruses and fungi, flowering time, plant architecture, tolerance to salinity and plant reproduction but also addresses traits improving the quality of agricultural products for industrial purposes. Examples include virus resistant tomato, early flowering apple and low-amylose starch potato. The wide range of traits illustrates the potential of genome editing towards a more sustainable agriculture through the reduction of pesticides and to the emergence of innovative bio-economy sectors based on custom tailored quality traits.

  相似文献   
107.
108.
109.
Haag CR  Roze D 《Genetics》2007,176(3):1663-1678
In diploid organisms, sexual reproduction rearranges allelic combinations between loci (recombination) as well as within loci (segregation). Several studies have analyzed the effect of segregation on the genetic load due to recurrent deleterious mutations, but considered infinite populations, thus neglecting the effects of genetic drift. Here, we use single-locus models to explore the combined effects of segregation, selection, and drift. We find that, for partly recessive deleterious alleles, segregation affects both the deterministic component of the change in allele frequencies and the stochastic component due to drift. As a result, we find that the mutation load may be far greater in asexuals than in sexuals in finite and/or subdivided populations. In finite populations, this effect arises primarily because, in the absence of segregation, heterozygotes may reach high frequencies due to drift, while homozygotes are still efficiently selected against; this is not possible with segregation, as matings between heterozygotes constantly produce new homozygotes. If deleterious alleles are partly, but not fully recessive, this causes an excess load in asexuals at intermediate population sizes. In subdivided populations without extinction, drift mostly occurs locally, which reduces the efficiency of selection in both sexuals and asexuals, but does not lead to global fixation. Yet, local drift is stronger in asexuals than in sexuals, leading to a higher mutation load in asexuals. In metapopulations with turnover, global drift becomes again important, leading to similar results as in finite, unstructured populations. Overall, the mutation load that arises through the absence of segregation in asexuals may greatly exceed previous predictions that ignored genetic drift.  相似文献   
110.
FXR-deficiency confers increased susceptibility to torpor   总被引:1,自引:0,他引:1  
The role of the nuclear receptor FXR in adaptive thermogenesis was investigated using FXR-deficient mice. Despite elevated serum bile acid concentrations and increased mRNA expression profiles of thermogenic genes in brown adipose tissue, FXR-deficiency did not alter energy expenditure under basal conditions. However, FXR-deficiency accelerated the fasting-induced entry into torpor in a leptin-dependent manner. FXR-deficient mice were also extremely cold-intolerant. These altered responses may be linked to a more rapid decrease in plasma concentrations of metabolic fuels (glucose, triglycerides) thus impairing uncoupling protein 1-driven thermogenesis. These results identify FXR as a modulator of energy homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号