首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7068篇
  免费   581篇
  国内免费   3篇
  7652篇
  2023年   38篇
  2022年   68篇
  2021年   145篇
  2020年   94篇
  2019年   110篇
  2018年   187篇
  2017年   158篇
  2016年   214篇
  2015年   356篇
  2014年   392篇
  2013年   505篇
  2012年   605篇
  2011年   563篇
  2010年   348篇
  2009年   335篇
  2008年   460篇
  2007年   451篇
  2006年   402篇
  2005年   365篇
  2004年   354篇
  2003年   341篇
  2002年   315篇
  2001年   75篇
  2000年   49篇
  1999年   68篇
  1998年   70篇
  1997年   53篇
  1996年   47篇
  1995年   54篇
  1994年   37篇
  1993年   35篇
  1992年   24篇
  1991年   27篇
  1990年   24篇
  1989年   30篇
  1988年   17篇
  1987年   11篇
  1986年   13篇
  1985年   14篇
  1984年   13篇
  1983年   12篇
  1982年   15篇
  1981年   13篇
  1980年   20篇
  1979年   11篇
  1978年   15篇
  1977年   12篇
  1976年   15篇
  1975年   8篇
  1974年   14篇
排序方式: 共有7652条查询结果,搜索用时 31 毫秒
61.
CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.Biological membranes are conceptually simple structures that may be generated in vitro according to simple physicochemical principles. In vivo, however, membranes are highly complex and host a plethora of proteins that mediate the transfer of molecules and communication across the membrane. Proteins may be trapped in membrane by their transmembrane domains, anchored by lipid tails, or attach to membrane-integral proteins. A further level of complexity is seen when membrane proteins are not equally distributed but occupy only a limited fraction of the available surface (i.e. when they are polarly localized or when they form small membrane subdomains in the micrometer range). The question of how membrane proteins are retained locally and prevented from diffusing freely is of high importance to cell biology. Polarly localized proteins may be retained in their respective domains by membrane fences; in such a situation, polarly localized proteins are mobile in their domains but cannot diffuse through tightly packed scaffold proteins forming a molecular fence within the membrane. Membrane fences delimiting polar domains have been described in different organisms. For example, diffusion between membrane compartments is prevented in budding yeast (Saccharomyces cerevisiae) at the level of the bud neck (Barral et al., 2000; Takizawa et al., 2000); in ciliated vertebrate cells, between ciliary and periciliary membranes (Hu et al., 2010); in epithelial cells, between apical and basolateral membranes (van Meer and Simons, 1986); in neurons, between axon and soma (Kobayashi et al., 1992; Winckler et al., 1999; Nakada et al., 2003); and in spermatozoa, at the level of the annulus (Myles et al., 1984; Nehme et al., 1993). The existence of membrane scaffolds that prevent free protein diffusion has also been described in bacteria (Baldi and Barral, 2012; Schlimpert et al., 2012). In plants, we have shown the existence of a strict membrane fence in the root endodermis, where a median domain splits the cell in two lateral halves occupied by different sets of proteins (Alassimone et al., 2010). The situation in the plant endodermis is analogous to the separation of animal epithelia into apical and basolateral domains; indeed, a parallel between epithelia and endodermal cells has been drawn, despite the different origin of multicellularity in plants and animals (Grebe, 2011).The protein complexes responsible for the formation of membrane fences have been identified. Septins are a family of proteins able to oligomerize and form filaments (Saarikangas and Barral, 2011); their role in the formation of membrane fences has been demonstrated in several organisms and cellular situations, including the yeast bud neck (Barral et al., 2000; Takizawa et al., 2000), animal cilia (Hu et al., 2010), and mammalian spermatozoa (Ihara et al., 2005; Kissel et al., 2005; Kwitny et al., 2010). At the axonal initial segment of neurons, AnkyrinG is necessary to establish and maintain a membrane scaffold where different membrane proteins are immobilized and stabilized (Hedstrom et al., 2008; Sobotzik et al., 2009). In Caulobacter crescentus, the stalk protein Stp forms a complex that prevents diffusion between the cell body and stalk and between stalk compartments. Claudins and occludin are the main components of epithelial tight junctions (Furuse et al., 1993, 1998). Occludins are four-membrane-span proteins and belong to the MARVEL protein family (Sánchez-Pulido et al., 2002), as do Tricellulin and MARVELD3, which are also tight junction-associated proteins (Furuse et al., 1993; Ikenouchi et al., 2005; Steed et al., 2009).In Arabidopsis (Arabidopsis thaliana), our group identified a family of proteins that form a membrane fence in the endodermis (Roppolo et al., 2011). These CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASP1 to CASP5) are four-transmembrane proteins that form a median domain referred to as the Casparian strip membrane domain (CSD). CASPs are initially targeted to the whole plasma membrane, then they are quickly removed from lateral plasma membranes and remain localized exclusively at the CSD; there, they show an extremely low turnover, although they are eventually removed (Roppolo et al., 2011). The membrane proteins NOD26-LIKE INTRINSIC PROTEIN5;1 and BORON TRANSPORTER1 are restricted from diffusing through the CSD and remain polarly localized in the outer and inner lateral membranes, respectively; a fluorescent lipophilic molecule, when integrated in the outer endodermal membrane, was blocked at the level of the CSD and could not diffuse into the inner membrane (Roppolo et al., 2011). Besides making a plasma membrane diffusion barrier, CASPs have an important role in directing the modification of the cell wall juxtaposing their membrane domain: by interacting with secreted peroxidases, they mediate the deposition of lignin and the building up of the Casparian strips (Roppolo et al., 2011; Naseer et al., 2012; Lee et al., 2013). The two CASP activities, making membrane scaffolds and directing a modification of the cell wall, can be uncoupled: indeed, (1) formation of the CASP domain is independent from the deposition of lignin, and (2) interaction between CASPs and peroxidases can take place outside the CSD when CASPs are ectopically expressed (Lee et al., 2013).As CASPs are currently the only known proteins forming membrane fences in plants and because of their essential role in directing a local cell wall modification, we were interested in characterizing the repertoire of a large number of CASP-like (CASPL) proteins in the plant kingdom. Our aim was to provide the molecular basis for the discovery of additional membrane domains in plants and for the identification of proteins involved in local cell wall modifications. We extended our phylogenetic analysis outside of the plant kingdom and found conservation between CASPLs and the MARVEL protein family. Conserved residues are located in transmembrane domains, and we provide evidence suggesting that these domains are involved in CASP localization. We explored the potential use of the CASPL module in plants by investigating CASPL expression patterns and their ability to form membrane domains in the endodermis. Moreover, we related the appearance of the Casparian strips in the plant kingdom to the emergence of a CASP-specific signature that was not found in the genomes of plants lacking Casparian strips.  相似文献   
62.
The muscarinic functional antagonism of isoproterenol relaxation and the contribution of muscarinic M2 receptors were examined in human isolated bronchus. In intact tissues, acetylcholine (ACh) precontraction decreased isoproterenol potency and maximal relaxation (-log EC50 shift = -1.49 +/- 0.16 and E(max) inhibition for 100 microM ACh = 30%) more than the same levels of histamine contraction. The M2 receptor-selective antagonist methoctramine (1 microM) reduced this antagonism in ACh- but not histamine-contracted tissues. Similar results were obtained for forskolin-induced relaxation. After selective inactivation of M3 receptors with 4-diphenylacetoxy-N-(2-chloroethyl)piperadine hydrochloric acid (30 nM), demonstrated by abolition of contractile and inositol phosphate responses to ACh, muscarinic recontractile responses were obtained in U-46619-precontracted tissues fully relaxed with isoproterenol. Methoctramine antagonized recontraction, with pK(B) (6.9) higher than in intact tissues (5.4), suggesting participation of M2 receptors. In M3-inactivated tissues, methoctramine augmented the isoproterenol relaxant potency in U-46619-contracted bronchus and reversed the ACh-induced inhibition of isoproterenol cAMP accumulation. These results indicate that M2 receptors cause indirect contraction of human bronchus by reversing sympathetically mediated relaxation and contribute to cholinergic functional antagonism.  相似文献   
63.
The spatial and temporal dynamics of microbial community structure and function were surveyed in duplicated woodchip-biofilters operated under constant conditions for 231 days. The contaminated gaseous stream for treatment was representative of composting emissions, included ammonia, dimethyl disulfide and a mixture of five oxygenated volatile organic compounds. The community structure and diversity were investigated by denaturing gradient gel electrophoresis on 16S rRNA gene fragments. During the first 42 days, microbial acclimatization revealed the influence of operating conditions and contaminant loading on the biofiltration community structure and diversity, as well as the limited impact of inoculum compared to the greater persistence of the endogenous woodchip community. During long-term operation, a high and stable removal efficiency was maintained despite a highly dynamic microbial community, suggesting the probable functional redundancy of the community. Most of the contaminant removal occurred in the first compartment, near the gas inlet, where the microbial diversity was the highest. The stratification of the microbial structures along the filter bed was statistically correlated to the longitudinal distribution of environmental conditions (selective pressure imposed by contaminant concentrations) and function (contaminant elimination capacity), highlighting the central role of the bacterial community. The reproducibility of microbial succession in replicates suggests that the community changes were presumably driven by a deterministic process.  相似文献   
64.
Mucin glycans were isolated from different regions of the normal human intestine (ileum, cecum, transverse and sigmoid colon, and rectum) of two individuals with ALeb blood group. A systematic study of the monosaccharides and oligosaccharide alditols released by reductive beta-elimination from mucins was performed using gas chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and nuclear magnetic resonance spectroscopy techniques. Important variations were observed in the mucin-associated oligosaccharide content with an increasing gradient of sialic acid from the ileum to the colon associated with a reverse gradient of fucose. Moreover, a comparative study of the Sda/Cad and ABH blood group determinants along the gastrointestinal tract showed the same reverse distribution in the two kinds of antigens. In addition, besides their heterogeneity, sialic acids presented considerable variations in the degree of O-acetylation in relation to glycan sialylation level. These data are discussed in view of recent concepts suggesting that the oligosaccharide composition of the gut constitutes a varied ecosystem for microorganisms that are susceptible to adapt there and possess the specific adhesion system and specific enzymes able to provide a carbohydrate nutrient.  相似文献   
65.
66.
67.
We compare the primary sex ratio (proportion of haploid eggs laid by queens) and the secondary sex ratio (proportion of male pupae produced) in the Argentine ant Iridomyrmex humilis with the aim of investigating whether workers control the secondary sex ratio by selectively eliminating male brood. The proportion of haploid eggs produced by queens was close to 0.5 in late winter, decreased to less than 0.3 in spring and summer, and increased again to a value close to 0.5 in fall. Laboratory experiments indicate that temperture is a proximate factor influencing the primary sex ratio with a higher proportion of haploid eggs being laid at colder temperatures. Production of queen pupae ceased in mid-June, about three weeks before that of male pupae. After this time only worker pupae were produced. During the period of production of sexuals, the proportion of male pupae ranged from 0.30 to 0.38. Outside this period no males were reared although haploid eggs were produced all the year round by queens. Workers thus exert a control on the secondary sex ratio by eliminating a proportion of the male brood during the period of sexual production and eliminating all the males during the remainder of the cycle. These data are consistent with workers preferring a more female-biased sex ratio than queens. The evolutionary significance of the production of male eggs by queens all the year round is as yet unclear. It may be a mechanism allowing queen replacement in the case of the death of the queens in the colony.  相似文献   
68.

Background  

Fluctuating asymmetry is assumed to measure individual and population level developmental stability. The latter may in turn show an association with stress, which can be observed through asymmetry-stress correlations. However, the recent literature does not support an ubiquitous relationship. Very little is known why some studies show relatively strong associations while others completely fail to find such a correlation. We propose a new Bayesian statistical framework to examine these associations  相似文献   
69.
70.
The traditional view holds that peroxisomes are autonomous organelles multiplying by growth and division. More recently, new observations have challenged this concept. Herein, we present evidence supporting the involvement of the endoplasmic reticulum (ER) in peroxisome formation by electron microscopy, immunocytochemistry and three-dimensional image reconstruction of peroxisomes and associated compartments in mouse dendritic cells. We found the peroxisomal membrane protein Pex13p and the ATP-binding cassette transporter protein PMP70 present in specialized subdomains of the ER that were continuous with a peroxisomal reticulum from which mature peroxisomes arose. The matrix proteins catalase and thiolase were only detectable in the reticula and peroxisomes. Our results suggest the existence of a maturation pathway from the ER to peroxisomes and implicate the ER as a major source from which the peroxisomal membrane is derived.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号