全文获取类型
收费全文 | 3245篇 |
免费 | 247篇 |
国内免费 | 1篇 |
专业分类
3493篇 |
出版年
2024年 | 4篇 |
2023年 | 23篇 |
2022年 | 38篇 |
2021年 | 78篇 |
2020年 | 60篇 |
2019年 | 58篇 |
2018年 | 96篇 |
2017年 | 75篇 |
2016年 | 100篇 |
2015年 | 184篇 |
2014年 | 183篇 |
2013年 | 223篇 |
2012年 | 293篇 |
2011年 | 289篇 |
2010年 | 163篇 |
2009年 | 168篇 |
2008年 | 222篇 |
2007年 | 225篇 |
2006年 | 170篇 |
2005年 | 151篇 |
2004年 | 140篇 |
2003年 | 135篇 |
2002年 | 124篇 |
2001年 | 29篇 |
2000年 | 13篇 |
1999年 | 24篇 |
1998年 | 26篇 |
1997年 | 23篇 |
1996年 | 14篇 |
1995年 | 18篇 |
1994年 | 15篇 |
1993年 | 10篇 |
1992年 | 10篇 |
1991年 | 10篇 |
1990年 | 8篇 |
1989年 | 7篇 |
1988年 | 4篇 |
1986年 | 5篇 |
1985年 | 6篇 |
1984年 | 8篇 |
1983年 | 4篇 |
1982年 | 3篇 |
1981年 | 7篇 |
1980年 | 9篇 |
1979年 | 7篇 |
1978年 | 6篇 |
1977年 | 3篇 |
1976年 | 3篇 |
1974年 | 6篇 |
1973年 | 3篇 |
排序方式: 共有3493条查询结果,搜索用时 15 毫秒
51.
Odors can have repulsive effects on rodents based on two complementary adaptive behaviors: the avoidance of predator odors (potentially dangerous) and the avoidance of trigeminal stimulants (potentially noxious). The present study aimed to compare the behavioral effects on mice of odors according to their trigeminal properties and ecological significance. We used three different odors: 2,4,5-trimethylthiazoline (TMT: a fox feces odor frequently used to elicit fear-induced behaviors), toluene (a strong stimulant of the trigeminal system) and phenyl ethyl alcohol (PEA: a selective stimulant of the olfactory system). First, we checked preference and avoidance behaviors in mice with and without anosmia towards these odors to ensure their olfactory/trigeminal properties. Secondly, we used a standard test (open-field and elevated plus-maze) to assess the behaviors of mice when exposed to these odors. The results show that the anosmic and control mice both avoided TMT and toluene odors. In the open-field and the elevated plus-maze, mice exhibited "anxious" behaviors when exposed to TMT. Conversely, exposure to PEA induced "anxiolytic" effects confirmed by low blood corticosterone levels resulting from completion of the elevated plus-maze. Compared with TMT exposure, toluene exposure induced moderate "anxious" effects. 相似文献
52.
Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence 总被引:1,自引:0,他引:1
The effective acquisition of iron is a pre-requisite for survival of all organisms, especially parasites that have a high iron requirement. In mammals, iron homeostasis is meticulously regulated; extracellular free iron is essentially unavailable and host iron availability has a crucial role in the host-pathogen relationship. Therefore, pathogens use specialized and effective mechanisms to acquire iron. In this review, we summarize the iron-uptake systems in eukaryotic unicellular organisms with particular focus on the pathogenic species: Candida albicans, Tritrichomonas foetus, Trypanosoma brucei and Leishmania spp. We describe the diversity of their iron-uptake mechanisms and highlight the importance of the process for virulence. 相似文献
53.
Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release 总被引:5,自引:0,他引:5
Interleukin (IL)-1 expression is induced rapidly in response to diverse CNS insults and is a key mediator of experimentally induced neuronal injury. However, the mechanisms of IL-1-induced neurotoxicity are unknown. The aim of the present study was to examine the toxic effects of IL-1 on rat cortical cell cultures. Treatment with IL-1beta did not affect the viability of pure cortical neurones. However, IL-1 treatment of cocultures of neurones with glia or purified astrocytes induced caspase activation resulting in neuronal death. Neuronal cell death induced by IL-1 was prevented by pre-treatment with the IL-1 receptor antagonist, the broad spectrum caspase inhibitor Boc-Asp-(OMe)-CH(2)F or the antioxidant alpha-tocopherol. The NMDA receptor antagonist dizolcipine (MK-801) attenuated cell death induced by low doses of IL-1beta but the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) had no effect. Inhibition of inducible nitric oxide synthase with N(omega)-nitro-l-arginine methyl ester had no effect on neuronal cell death induced by IL-1beta. Thus, IL-1 activates the IL-1 type 1 receptor in astrocytes to induce caspase-dependent neuronal death, which is dependent on the release of free radicals and may contribute to neuronal cell death in CNS diseases. 相似文献
54.
Heim Alexander Luster Jörg Brunner Ivano Frey Beat Frossard Emmanuel 《Plant and Soil》1999,216(1-2):103-116
In order to investigate if Al resistance in Norway spruce (Picea abies[L.] Karst.) can be attributed to similar exclusion mechanisms as they occur in several crop plants, three-year-old Norway
spruce plants were treated for one week in hydroculture with either 500 μM AlCl3 or CaCl2 solutions at pH 4. Sequential root extraction with 1 M NH4Cl and 0.01 M HCl and EDX microanalysis revealed that Al and Ca in cell walls and on the surface participated in exchange processes. About
half of the Al extracted by the sequential extraction was not exchangeable by 1 M NH4Cl. Phenolics and phosphate present in the root extracts are possible ligands for Al adsorbed to or precipitated at the root
in a non-exchangeable form. In both treatments, C release during the first period of 2 d was much higher than during the remaining
time of the experiment. Al treated plants released less total C, carbohydrates and phenolics than did Ca treated plants. Acetate
was the only organic acid anion that could be detected in some samples of both treatments. Free amino acids were present at
micromolar concentrations but as hydrolysis did not increase their yield, there was no evidence of peptide release. One to
two thirds of the released C were large enough not to pass a 1 kDa ultrafilter. The results suggest that exudation of soluble
organic complexors is not a major Al tolerance mechanism in Norway spruce, although complexation of Al by phenolic substances
released by the root could be detected by fluorescence spectroscopy. Aluminium tolerance could rather be attributed to immobilization
in the root apoplast, where strong binding sites are available or precipitation may occur.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
55.
Tatarkiewicz K Smith PA Sablan EJ Polizzi CJ Aumann DE Villescaz C Hargrove DM Gedulin BR Lu MG Adams L Whisenant T Roy D Parkes DG 《American journal of physiology. Endocrinology and metabolism》2010,299(6):E1076-E1086
The risk of developing pancreatitis is elevated in type 2 diabetes and obesity. Cases of pancreatitis have been reported in type 2 diabetes patients treated with GLP-1 (GLP-1R) receptor agonists. To examine whether the GLP-1R agonist exenatide potentially induces or modulates pancreatitis, the effect of exenatide was evaluated in normal or diabetic rodents. Normal and diabetic rats received a single exenatide dose (0.072, 0.24, and 0.72 nmol/kg) or vehicle. Diabetic ob/ob or HF-STZ mice were infused with exenatide (1.2 and 7.2 nmol·kg(-1)·day(-1)) or vehicle for 4 wk. Post-exenatide treatment, pancreatitis was induced with caerulein (CRN) or sodium taurocholate (ST), and changes in plasma amylase and lipase were measured. In ob/ob mice, plasma cytokines (IL-1β, IL-2, IL-6, MCP-1, IFNγ, and TNFα) and pancreatitis-associated genes were assessed. Pancreata were weighed and examined histologically. Exenatide treatment alone did not modify plasma amylase or lipase in any models tested. Exenatide attenuated CRN-induced release of amylase and lipase in normal rats and ob/ob mice but did not modify the response to ST infusion. Plasma cytokines and pancreatic weight were unaffected by exenatide. Exenatide upregulated Reg3b but not Il6, Ccl2, Nfkb1, or Vamp8 expression. Histological analysis revealed that the highest doses of exenatide decreased CRN- or ST-induced acute inflammation, vacuolation, and acinar single cell necrosis in mice and rats, respectively. Ductal cell proliferation rates were low and similar across all groups of ob/ob mice. In conclusion, exenatide did not modify plasma amylase and lipase concentrations in rodents without pancreatitis and improved chemically induced pancreatitis in normal and diabetic rodents. 相似文献
56.
Summary A class of nonignorable models is presented for handling nonmonotone missingness in categorical longitudinal responses. This class of models includes the traditional selection models and shared parameter models. This allows us to perform a broader than usual sensitivity analysis. In particular, instead of considering variations to a chosen nonignorable model, we study sensitivity between different missing data frameworks. An appealing feature of the developed class is that parameters with a marginal interpretation are obtained, while algebraically simple models are considered. Specifically, marginalized mixed‐effects models ( Heagerty, 1999 , Biometrics 55, 688–698) are used for the longitudinal process that model separately the marginal mean and the correlation structure. For the correlation structure, random effects are introduced and their distribution is modeled either parametrically or non‐parametrically to avoid potential misspecifications. 相似文献
57.
The xipotl mutant of Arabidopsis reveals a critical role for phospholipid metabolism in root system development and epidermal cell integrity 下载免费PDF全文
Cruz-Ramírez A López-Bucio J Ramírez-Pimentel G Zurita-Silva A Sánchez-Calderon L Ramírez-Chávez E González-Ortega E Herrera-Estrella L 《The Plant cell》2004,16(8):2020-2034
Phosphocholine (PCho) is an essential metabolite for plant development because it is the precursor for the biosynthesis of phosphatidylcholine, which is the major lipid component in plant cell membranes. The main step in PCho biosynthesis in Arabidopsis thaliana is the triple, sequential N-methylation of phosphoethanolamine, catalyzed by S-adenosyl-l-methionine:phosphoethanolamine N-methyltransferase (PEAMT). In screenings performed to isolate Arabidopsis mutants with altered root system architecture, a T-DNA mutagenized line showing remarkable alterations in root development was isolated. At the seedling stage, the mutant phenotype is characterized by a short primary root, a high number of lateral roots, and short epidermal cells with aberrant morphology. Genetic and biochemical characterization of this mutant showed that the T-DNA was inserted at the At3g18000 locus (XIPOTL1), which encodes PEAMT (XIPOTL1). Further analyses revealed that inhibition of PCho biosynthesis in xpl1 mutants not only alters several root developmental traits but also induces cell death in root epidermal cells. Epidermal cell death could be reversed by phosphatidic acid treatment. Taken together, our results suggest that molecules produced downstream of the PCho biosynthesis pathway play key roles in root development and act as signals for cell integrity. 相似文献
58.
Background
Although DNA microarray technologies are very powerful for the simultaneous quantitative characterization of thousands of genes, the quality of the obtained experimental data is often far from ideal. The measured microarrays images represent a regular collection of spots, and the intensity of light at each spot is proportional to the DNA copy number or to the expression level of the gene whose DNA clone is spotted. Spot quality control is an essential part of microarray image analysis, which must be carried out at the level of individual spot identification. The problem is difficult to formalize due to the diversity of instrumental and biological factors that can influence the result. 相似文献59.
Aline Finger Thomas Schmitt Frank Emmanuel Zachos Marc Meyer Thorsten Assmann Jan Christian Habel 《Ecography》2009,32(3):382-390
Rising temperatures and agricultural changes (intensification and succession on fallow land) during the last few decades have caused a strong decline of moist and cool sites on nutrient-poor grasslands and species depending on these habitats. We tested the effects of habitat deterioration on a local and regional scale in such a species, the highly endangered butterfly Lycaena helle , which was more widely distributed over central Europe during the postglacial period, but has recently become restricted to some remnants. We analysed five polymorphic microsatellite loci in 220 individuals sampled at ten different localities. The study sites in Germany, Luxembourg and Belgium are geographically split into three mountain regions: the Ardennes, the Eifel and the Westerwald; the latter is separated from the other two by the river Rhine. A comparatively high genetic diversity was detected in all local populations and genetic differentiation was found among the Ardennes, the Eifel and the Westerwald (FCT : 0.084). The genetic differentiation among all populations (FST : 0.137) underlines natural and anthropogenic habitat fragmentation. While ongoing gene flow seems to exist among the Eifel populations indicating the only intact metapopulation, a high genetic differentiation in the Ardennes and the Westerwald indicates a disruption of population connectivity. Our genetic data obtained on different spatial scales show the genetic consequence of long-term isolation and should trigger necessary conservation measures at the metapopulation level. 相似文献
60.
Jeffrey E. McLean Emmanuel Datan Demetrius Matassov Zahra F. Zakeri 《Journal of virology》2009,83(16):8233-8246
The ectopic overexpression of Bcl-2 restricts both influenza A virus-induced apoptosis and influenza A virus replication in MDCK cells, thus suggesting a role for Bcl-2 family members during infection. Here we report that influenza A virus cannot establish an apoptotic response without functional Bax, a downstream target of Bcl-2, and that both Bax and Bak are directly involved in influenza A virus replication and virus-induced cell death. Bak is substantially downregulated during influenza A virus infection in MDCK cells, and the knockout of Bak in mouse embryonic fibroblasts yields a dramatic rise in the rate of apoptotic death and a corresponding increase in levels of virus replication, suggesting that Bak suppresses both apoptosis and the replication of virus and that the virus suppresses Bak. Bax, however, is activated and translocates from the cytosol to the mitochondria; this activation is required for the efficient induction of apoptosis and virus replication. The knockout of Bax in mouse embryonic fibroblasts blocks the induction of apoptosis, restricts the infection-mediated activation of executioner caspases, and inhibits virus propagation. Bax knockout cells still die but by an alternative death pathway displaying characteristics of autophagy, similarly to our previous observation that influenza A virus infection in the presence of a pancaspase inhibitor leads to an increase in levels of autophagy. The knockout of Bax causes a retention of influenza A virus NP within the nucleus. We conclude that the cell and virus struggle to control apoptosis and autophagy, as appropriately timed apoptosis is important for the replication of influenza A virus.The pathology of influenza A virus infection usually arises from acute lymphopenia and inflammation of the lungs and airway columnar epithelial cells (23, 38). Influenza A virus induces apoptotic death in infected epithelial, lymphocyte, and phagocytic cells, and apoptosis is a source of tissue damage during infection (3, 22, 33) and increased susceptibility to bacterial pathogens postinfection (31). While the induction of apoptosis by influenza A virus has been well documented (4, 19-21, 28, 33, 37), the mechanisms of this interaction are not well understood. Two viral proteins, NS1 and PB1-F2, have been associated with viral killing of cells. NS1, originally characterized as being proapoptotic (34), was later identified as being an interferon antagonist, inhibiting the activation of several key antiviral responses and restricting the apoptotic response to infection (1, 10, 15, 18, 35, 39, 46). In contrast, PB1-F2 induces apoptosis primarily by localizing to the outer mitochondrial membrane, promoting cytochrome c release, and triggering the apoptotic cascade (43). This effect, however, is typically restricted to infected monocytes, leading to the hypothesis that PB1-F2 induces apoptosis specifically to clear the landscape of immune responders (5, 44). Although PB1-F2 activity does not directly manipulate virus replication or virus-induced apoptosis, PB1-F2 localization to the mitochondrial membrane during infection potentiates the apoptotic response in epithelial and fibroblastic cells through tBID signaling with proapoptotic Bcl-2 family protein members Bax and Bak (22, 43, 44).The Bcl-2 protein family consists of both pro- and antiapoptotic members that regulate cytochrome c release during mitochondrion-mediated apoptosis through the formation of pore-like channels in the outer mitochondrial membrane (12, 16). During the initiation of mitochondrion-mediated apoptosis, cytoplasmic Bid is cleaved to form tBID. This, in turn, activates proapoptotic Bax and Bak (40), which drive cytochrome c release and subsequent caspase activation. Bak is constitutively associated with the mitochondrial membrane, whereas inactive Bax is primarily cytosolic, translocating to the outer mitochondrial membrane only after activation (6). The activation of Bax and Bak results in homo- and heterodimer formation at the outer mitochondrial membrane, generating pores that facilitate mitochondrial membrane permeabilization and cytochrome c release (14, 17), leading to caspase activation and the apoptotic cascade (8). Antiapoptotic members of the Bcl-2 protein family, including Bcl-2, inhibit the activation of proapoptotic Bax and Bak primarily by sequestering inactive Bax and Bak monomers via interactions between their BH3 homology domains (7).Bcl-2 expression has been linked to decreased viral replication rates (26). Bcl-2 overexpression inhibits influenza A virus-induced cell death and reduces the titer and spread of newly formed virions (29). The activation of caspase-3 in the absence of sufficient Bcl-2 is critical to the influenza A virus life cycle. Both Bcl-2 expression and the lack of caspase activation during infection lead to the nuclear accumulation of influenza virus ribonucleoprotein (RNP) complexes, thereby leading to the improper assembly of progeny virions and a marked reduction in titers of infectious virus (26, 41, 42, 45).Here we show that influenza A virus induces mitochondrion-mediated (intrinsic-pathway) apoptosis signaled specifically through Bax and that this Bax signaling is essential for the maximum efficiency of virus propagation. In contrast, Bak expression is strongly downregulated during infection. Cells lacking Bak (while expressing Bax) display a much more severe apoptotic phenotype in response to infection and produce infectious virions at a higher rate than the wild type (WT), suggesting that Bak, which can suppress viral replication, is potentially downregulated by the virus. Our results indicate essential and opposing roles for Bax and Bak in both the response of cells to influenza A virus infection and the ability of the virus to maximize its own replicative potential. 相似文献